A hybrid mimetic spectral element method for three-dimensional linear elasticity problems

被引:2
作者
Zhang, Yi [1 ]
Fisser, Joel [1 ]
Gerritsma, Marc [1 ]
机构
[1] Delft Univ Technol, Fac Aerosp Engn, Kluyverweg 1, NL-2629 HS Delft, Netherlands
关键词
Mimetic spectral element method; Hybridization; Domain decomposition; Variational principle; Lagrange multiplier; De Rham complex; EXTERIOR CALCULUS; CONSTRUCTION; PRINCIPLES; SPACES; FORMS;
D O I
10.1016/j.jcp.2021.110179
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We introduce a domain decomposition structure-preserving method based on a hybrid mimetic spectral element method for three-dimensional linear elasticity problems in curvilinear conforming structured meshes. The method is an equilibrium method which satisfies pointwise equilibrium of forces. The domain decomposition is established through hybridization which first allows for an inter-element normal stress discontinuity and then enforces the normal stress continuity using a Lagrange multiplier which turns out to be the displacement in the trace space. Dual basis functions are employed to simplify the discretization and to obtain a higher sparsity. Numerical tests supporting the method are presented. (C) 2021 The Author(s). Published by Elsevier Inc.
引用
收藏
页数:20
相关论文
共 46 条
[1]   MIXED AND NONCONFORMING FINITE-ELEMENT METHODS - IMPLEMENTATION, POSTPROCESSING AND ERROR-ESTIMATES [J].
ARNOLD, DN ;
BREZZI, F .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1985, 19 (01) :7-32
[2]  
Arnold DN, 2006, ACT NUMERIC, V15, P1, DOI 10.1017/S0962492906210018
[3]   FINITE ELEMENT EXTERIOR CALCULUS FROM HODGE THEORY TO NUMERICAL STABILITY [J].
Arnold, Douglas N. ;
Falk, Richard S. ;
Winther, Ragnar .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 47 (02) :281-354
[4]  
Belgacem B, 1997, ESAIM-MATH MODEL NUM, V31, P289
[5]  
Ben Belgacem F, 1999, NUMER MATH, V84, P173, DOI 10.1007/s002119900100
[6]  
Bochev PB, 2006, IMA VOL MATH APPL, V142, P89
[7]  
Boffi Daniele., 2013, Mixed finite element methods and applications, P44
[8]  
Bossavit A., 1998, J JAPAN SOC APPL ELE, V6, P17
[9]  
BREZZI F, 1974, REV FR AUTOMAT INFOR, V8, P129
[10]   ISOGEOMETRIC DISCRETE DIFFERENTIAL FORMS IN THREE DIMENSIONS [J].
Buffa, A. ;
Rivas, J. ;
Sangalli, G. ;
Vazquez, R. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (02) :818-844