On a property of the nodal set of least energy sign-changing solutions for quasilinear elliptic equations

被引:5
作者
Bobkov, Vladimir [1 ,2 ]
Kolonitskii, Sergey [3 ]
机构
[1] Univ West Bohemia, Fac Appl Sci, Dept Math, Univ 8, Plzen 30614, Czech Republic
[2] Univ West Bohemia, Fac Appl Sci, NTIS, Univ 8, Plzen 30614, Czech Republic
[3] St Petersburg State Univ, 7-9 Univ Skaya Nab, St Petersburg 199034, Russia
关键词
p-Laplacian; superlinear; second eigenvalue; least energy nodal solution; nodal set; Payne conjecture; polarization; LANE-EMDEN PROBLEMS; 2ND EIGENFUNCTION; ASYMPTOTICS; REGULARITY; LAPLACIAN;
D O I
10.1017/prm.2018.88
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note, we prove the Payne-type conjecture about the behaviour of the nodal set of least energy sign-changing solutions for the equation -Delta(p)u = f(u) in bounded Steiner symmetric domains Omega subset of R-N under the zero Dirichlet boundary conditions. The nonlinearity f is assumed to be either superlinear or resonant. In the latter case, least energy sign-changing solutions are second eigenfunctions of the zero Dirichlet p-Laplacian in Omega. We show that the nodal set of any least energy sign-changing solution intersects the boundary of Omega. The proof is based on a moving polarization argument.
引用
收藏
页码:1163 / 1173
页数:11
相关论文
共 28 条
[1]   Qualitative properties of nodal solutions of semilinear elliptic equations in radially symmetric domains [J].
Aftalion, A ;
Pacella, F .
COMPTES RENDUS MATHEMATIQUE, 2004, 339 (05) :339-344
[2]   NODAL LINES OF EIGENFUNCTIONS OF THE FIXED MEMBRANE PROBLEM IN GENERAL CONVEX DOMAINS [J].
ALESSANDRINI, G .
COMMENTARII MATHEMATICI HELVETICI, 1994, 69 (01) :142-154
[3]   ON THE STRUCTURE OF THE SECOND EIGENFUNCTIONS OF THE p-LAPLACIAN ON A BALL [J].
Anoop, T. V. ;
Drabek, P. ;
Sasi, Sarath .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (06) :2503-2512
[4]   Partial symmetry of least energy nodal solutions to some variational problems [J].
Bartsch, T ;
Weth, T ;
Willew, M .
JOURNAL D ANALYSE MATHEMATIQUE, 2005, 96 (1) :1-18
[5]  
Bobkov V., 2017, ARXIV170107408
[6]   ON EXISTENCE OF NODAL SOLUTION TO ELLIPTIC EQUATIONS WITH CONVEX-CONCAVE NONLINEARITIES [J].
Bobkov, V. E. .
UFA MATHEMATICAL JOURNAL, 2013, 5 (02) :18-30
[7]   Asymptotics and symmetries of least energy nodal solutions of Lane-Emden problems with slow growth [J].
Bonheure, Denis ;
Bouchez, Vincent ;
Grumiau, Christopher ;
Van Schaftingen, Jean .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2008, 10 (04) :609-631
[8]   An approach to symmetrization via polarization [J].
Brock, F ;
Solynin, AY .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (04) :1759-1796
[9]   A sign-changing solution for a superlinear Dirichlet problem [J].
Castro, A ;
Cossio, J ;
Neuberger, JM .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1997, 27 (04) :1041-1053
[10]   The beginning of the Fucik spectrum for the p-Laplacian [J].
Cuesta, M ;
de Figueiredo, D ;
Gossez, JP .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 159 (01) :212-238