Exploiting SIFT Descriptor for Rotation Invariant Convolutional Neural Network

被引:0
作者
Kumar, Abhay [1 ]
Jain, Nishant [1 ]
Singh, Chirag [1 ]
Tripathi, Suraj [1 ]
机构
[1] Samsung R&D Inst, Voice Intelligence R&D, Bangalore, Karnataka, India
来源
IEEE INDICON: 15TH IEEE INDIA COUNCIL INTERNATIONAL CONFERENCE | 2018年
关键词
Convolutional Neural Network; Max-pooling; SIFT Descriptor; Scale Invariant Feature Transform;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a novel approach to exploit the distinctive invariant features in convolutional neural network The proposed CNN model uses Scale Invariant Feature Transform (SIFT) descriptor instead of the max pooling layer. Max-pooling layer discards the pose, i.e., translational and rotational relationship between the low-level features, and hence unable to capture the spatial hierarchies between low and high level features. The SIFT descriptor layer captures the orientation and the spatial relationship of the features extracted by convolutional layer. The proposed SIFT Descriptor CNN, therefore, combines the feature extraction capabilities of CNN model and rotation invariance of SIFT descriptor. Experimental results on the MNIST and fashionMNIST datasets indicate reasonable improvements over conventional methods available in literature.
引用
收藏
页数:5
相关论文
共 24 条
  • [1] [Anonymous], 2016, INT C LEARN REPR
  • [2] [Anonymous], 2013, INT C LEARN REPR
  • [3] [Anonymous], 2018, 6 INT C LEARN REPR
  • [4] [Anonymous], 2016, INT C LEARN REPR
  • [5] Boureau Y. L., 2010, P ICML 10 P 27 INT C, P111
  • [6] Chcn L, 2017, 2017 IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION (IEEE ICIA 2017), P1184, DOI 10.1109/ICInfA.2017.8079081
  • [7] Convolutional Neural Network With Data Augmentation for SAR Target Recognition
    Ding, Jun
    Chen, Bo
    Liu, Hongwei
    Huang, Mengyuan
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2016, 13 (03) : 364 - 368
  • [8] Fundamental Technologies in Modern Speech Recognition
    Furui, Sadaoki
    Deng, Li
    Gales, Mark
    Ney, Hermann
    Tokuda, Keiichi
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2012, 29 (06) : 16 - 17
  • [9] Glorot X., 2010, P 13 INT C ART INT S, P249
  • [10] Deep Residual Learning for Image Recognition
    He, Kaiming
    Zhang, Xiangyu
    Ren, Shaoqing
    Sun, Jian
    [J]. 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 770 - 778