Regularized numerical methods for the logarithmic Schrodinger equation

被引:32
作者
Bao, Weizhu [1 ]
Carles, Remi [2 ]
Su, Chunmei [3 ]
Tang, Qinglin [4 ]
机构
[1] Natl Univ Singapore, Dept Math, Singapore 119076, Singapore
[2] Univ Rennes, UMR 6625, CNRS, IRMAR, F-35000 Rennes, France
[3] Tech Univ Munich, Zentrum Math, D-85748 Garching, Germany
[4] Sichuan Univ, Sch Math, State Key Lab Hydraul & Mt River Engn, Chengdu 610064, Peoples R China
关键词
GROSS-PITAEVSKII EQUATION; FINITE-DIFFERENCE METHODS; TIME-SPLITTING METHODS; APPROXIMATIONS; CONVERGENCE; SOLITONS; SCHEME; ENERGY; MODEL;
D O I
10.1007/s00211-019-01058-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present and analyze two numerical methods for the logarithmic Schrodinger equation (LogSE) consisting of a regularized splitting method and a regularized conservative Crank-Nicolson finite difference method (CNFD). In order to avoid numerical blow-up and/or to suppress round-off error due to the logarithmic nonlinearity in the LogSE, a regularized logarithmic Schrodinger equation (RLogSE) with a small regularized parameter 0 < epsilon << 1 is adopted to approximate the LogSE with linear convergence rate O(epsilon). Then we use the Lie-Trotter splitting integrator to solve the RLogSE and establish its error bound O(tau(1/2)ln(epsilon(-1))) with tau > 0 the time step, which implies an error bound at O(epsilon+tau(1/2) ln(epsilon(-1))) for the LogSE by the Lie-Trotter splitting method. In addition, the CNFD is also applied to discretize the RLogSE, which conserves the mass and energy in the discretized level. Numerical results are reported to confirm our error bounds and to demonstrate rich and complicated dynamics of the LogSE.
引用
收藏
页码:461 / 487
页数:27
相关论文
共 51 条
[1]   ON FULLY DISCRETE GALERKIN METHODS OF 2ND-ORDER TEMPORAL ACCURACY FOR THE NONLINEAR SCHRODINGER-EQUATION [J].
AKRIVIS, GD ;
DOUGALIS, VA ;
KARAKASHIAN, OA .
NUMERISCHE MATHEMATIK, 1991, 59 (01) :31-53
[2]   FINITE-DIFFERENCE DISCRETIZATION OF THE CUBIC SCHRODINGER-EQUATION [J].
AKRIVIS, GD .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1993, 13 (01) :115-124
[3]  
[Anonymous], 2016, ELECTRON J DIFFER EQ
[4]  
[Anonymous], 1980, Annales de la faculte de sciences de Toulouse, 5e serie, DOI DOI 10.5802/AFST.543
[5]   Computational methods for the dynamics of the nonlinear Schrodinger/Gross-Pitaevskii equations [J].
Antoine, Xavier ;
Bao, Weizhu ;
Besse, Christophe .
COMPUTER PHYSICS COMMUNICATIONS, 2013, 184 (12) :2621-2633
[6]   Quantum Bose liquids with logarithmic nonlinearity: self-sustainability and emergence of spatial extent [J].
Avdeenkov, Alexander V. ;
Zloshchastiev, Konstantin G. .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2011, 44 (19)
[7]   Numerical methods and comparison for computing dark and bright solitons in the nonlinear Schrodinger equation [J].
Bao, Weizhu ;
Tang, Qinglin ;
Xu, Zhiguo .
JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 235 :423-445
[8]   OPTIMAL ERROR ESTIMATES OF FINITE DIFFERENCE METHODS FOR THE GROSS-PITAEVSKII EQUATION WITH ANGULAR MOMENTUM ROTATION [J].
Bao, Weizhu ;
Cai, Yongyong .
MATHEMATICS OF COMPUTATION, 2013, 82 (281) :99-128
[9]   UNIFORM ERROR ESTIMATES OF FINITE DIFFERENCE METHODS FOR THE NONLINEAR SCHRODINGER EQUATION WITH WAVE OPERATOR [J].
Bao, Weizhu ;
Cai, Yongyong .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (02) :492-521
[10]   Numerical solution of the Gross-Pitaevskii equation for Bose-Einstein condensation [J].
Bao, WZ ;
Jaksch, D ;
Markowich, PA .
JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 187 (01) :318-342