FPGA-based digital chaotic anti-interference lidar system

被引:20
作者
Feng, Liyan [1 ]
Gao, Huazheng [2 ]
Zhang, Jianxun [2 ]
Yu, Minghai [2 ]
Chen, Xianfeng [1 ,3 ]
Hu, Weisheng [2 ]
Yi, Lilin [2 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Phys & Astron, State Key Lab Adv Opt Commun Syst & Networks, Shanghai 200240, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Elect Informat & Elect Engn, State Key Lab Adv Opt Commun Syst & Networks, Shanghai 200240, Peoples R China
[3] Shandong Normal Univ, Collaborat Innovat Ctr Light Manipulat & Applicat, Jinan 250358, Peoples R China
来源
OPTICS EXPRESS | 2021年 / 29卷 / 02期
关键词
Field programmable gate arrays (FPGA);
D O I
10.1364/OE.414185
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We use the chaotic signal generated by a field-programmable gate array (FPGA) to establish a digital chaotic pulse lidar system, which can achieve mid-range detection and high ranging accuracy without a complex optical structure. We employ the FPGA to generate random sequences with different modulation rates based on different chaotic iterative equations and initial values. By selecting the initial value and improved logistic equations, we successfully achieve centimeter-level ranging accuracy. Experiments have proved that the digital chaotic lidar system can effectively resist the interference of chaotic signals, square wave signals, and sine wave signals with modulation frequencies of 10 MHz, 100 MHz, 200 MHz, and 1 GHz, showing its strong anti-interference capability. (C) 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:719 / 728
页数:10
相关论文
共 23 条
[1]   Laser ranging:: a critical review of usual techniques for distance measurement [J].
Amann, MC ;
Bosch, T ;
Lescure, M ;
Myllylä, R ;
Rioux, M .
OPTICAL ENGINEERING, 2001, 40 (01) :10-19
[2]   Applications of high resolution laser radar for 3-D multispectral imaging [J].
Andersen, J. F. ;
Busck, J. ;
Heiselberg, H. .
LASER RADAR TECHNOLOGY AND APPLICATIONS XI, 2006, 6214
[3]   Automotive Three-Dimensional Vision Through a Single-Photon Counting SPAD Camera [J].
Bronzi, Danilo ;
Zou, Yu ;
Villa, Federica ;
Tisa, Simone ;
Tosi, Alberto ;
Zappa, Franco .
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2016, 17 (03) :782-795
[4]   3D pulsed chaos lidar system [J].
Cheng, Chih-Hao ;
Chen, Chih-Ying ;
Chen, Jun-Da ;
Pan, Da-Kung ;
Ting, Kai-Ting ;
Lin, Fan-Yi .
OPTICS EXPRESS, 2018, 26 (09) :12230-12241
[5]   Antijamming Design and Analysis of a Novel Pulse Compression Radar Signal Based on Radar Identity and Chaotic Encryption [J].
Dai, Jian ;
Hao, Xinhong ;
Li, Ping ;
Li, Ze ;
Yan, Xiaopeng .
IEEE ACCESS, 2020, 8 :5873-5884
[6]   Mitigation of crosstalk effects in multi-LiDAR configurations [J].
Diehm, Axel L. ;
Hammer, Marcus ;
Hebel, Marcus ;
Arens, Michael .
ELECTRO-OPTICAL REMOTE SENSING XII, 2018, 10796
[7]   Laser detection of remote targets applying chaotic pulse position modulation [J].
Du, Pengfei ;
Geng, Dongxian ;
Wang, Wei ;
Gong, Mali .
OPTICAL ENGINEERING, 2015, 54 (11)
[8]   Ultra-low power anti-crosstalk collision avoidance light detection and ranging using chaotic pulse position modulation approach [J].
Hao, Jie ;
Gong, Ma-li ;
Du, Peng-fei ;
Lu, Bao-jie ;
Zhang, Fan ;
Zhang, Hai-tao ;
Fu, Xing .
CHINESE PHYSICS B, 2016, 25 (07)
[9]  
Hymans A. J., 1960, Proc. Inst. Elect. Eng. B, V107, P365, DOI 10.1049/pi-b-2.1960.0130
[10]   Time-stretch LiDAR as a spectrally scanned time-of-flight ranging camera [J].
Jiang, Yunshan ;
Karpf, Sebastian ;
Jalali, Bahram .
NATURE PHOTONICS, 2020, 14 (01) :14-+