Quantitative dopant profiling in semiconductors: A Kelvin probe force microscopy model

被引:38
作者
Baumgart, C. [1 ]
Helm, M. [1 ]
Schmidt, H. [1 ]
机构
[1] Forschungszentrum Dresden Rossendorf eV, Inst Ion Beam Phys & Mat Res, D-01314 Dresden, Germany
关键词
elemental semiconductors; Fermi level; nanostructured materials; semiconductor doping; silicon; SCANNING CAPACITANCE MICROSCOPY; SPREADING RESISTANCE MICROSCOPY; SILICON PN JUNCTION; LABEL-FREE; RESOLUTION; DEVICES; TIP;
D O I
10.1103/PhysRevB.80.085305
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Kelvin probe force microscopy (KPFM) is used to investigate the electrostatic force between a conductive probe and nanostructured Si with shallow or buried selectively doped regions under ambient conditions. A unique KPFM model correlates the measured Kelvin bias with the calculated Fermi energy, and thus allows quantitative dopant profiling. We show that due to an asymmetric electric-dipole formation at the semiconductor surface the measured Kelvin bias is related with the difference between Fermi energy and respective band edge, and independent of the probe potential.
引用
收藏
页数:5
相关论文
共 33 条
[1]   Analytical approach to the local contact potential difference on (001) ionic surfaces: Implications for Kelvin probe force microscopy [J].
Bocquet, Franck ;
Nony, Laurent ;
Loppacher, Christian ;
Glatzel, Thilo .
PHYSICAL REVIEW B, 2008, 78 (03)
[2]   Imaging of a silicon pn junction under applied bias with scanning capacitance microscopy and Kelvin probe force microscopy [J].
Buh, GH ;
Chung, HJ ;
Kim, CK ;
Yi, JH ;
Yoon, IT ;
Kuk, Y .
APPLIED PHYSICS LETTERS, 2000, 77 (01) :106-108
[3]   Comparison of two-dimensional carrier profiles in metal-oxide-semiconductor field-effect transistor structures obtained with scanning spreading resistance microscopy and inverse modeling [J].
De Wolf, P ;
Vandervorst, W ;
Smith, H ;
Khalil, N .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2000, 18 (01) :540-544
[4]   Surface potential mapping of biased pn junction with kelvin probe force microscopy: application to cross-section devices [J].
Doukkali, A ;
Ledain, S ;
Guasch, C ;
Bonnet, J .
APPLIED SURFACE SCIENCE, 2004, 235 (04) :507-512
[5]   Assessing the performance of two-dimensional dopant profiling techniques [J].
Duhayon, N ;
Eyber, P ;
Fouchier, M ;
Clarysee, T ;
Vandervorst, W ;
Alvarez, D ;
Schoemann, S ;
Ciappa, M ;
Stangoni, M ;
Fichtner, W ;
Formanek, P ;
Kittler, M ;
Raineri, V ;
Giannazzo, F ;
Goghero, D ;
Rosenwaks, Y ;
Shikler, R ;
Saraf, S ;
Sadewasser, S ;
Barreau, N ;
Glatzel, T ;
Verheijen, M ;
Mentink, SAM ;
von Sprekelsen, M ;
Maltezopoulos, T ;
Wiesendanger, R ;
Hellemans, L .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2004, 22 (01) :385-393
[6]   Label-free detection of the aptamer binding on protein patterns using Kelvin probe force microscopy (KPFM) [J].
Gao, Pei ;
Cai, Yuguang .
ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2009, 394 (01) :207-214
[7]   Scanning capacitance microscopy two-dimensional carrier profiling for ultra-shallow junction characterization in deep submicron technology [J].
Giannazzo, F ;
Raineri, V ;
Mirabella, S ;
Bruno, E ;
Impellizzeri, G ;
Priolo, F .
MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2005, 124 :54-61
[8]   Scanning capacitance microscopy on ultranarrow doping profiles in Si [J].
Giannazzo, F ;
Goghero, D ;
Raineri, V ;
Mirabella, S ;
Priolo, F .
APPLIED PHYSICS LETTERS, 2003, 83 (13) :2659-2661
[9]   2-DIMENSIONAL SURFACE DOPANT PROFILING IN SILICON USING SCANNING KELVIN PROBE MICROSCOPY [J].
HENNING, AK ;
HOCHWITZ, T ;
SLINKMAN, J ;
NEVER, J ;
HOFFMANN, S ;
KASZUBA, P ;
DAGHLIAN, C .
JOURNAL OF APPLIED PHYSICS, 1995, 77 (05) :1888-1896
[10]   Resolution and contrast in Kelvin probe force microscopy [J].
Jacobs, HO ;
Leuchtmann, P ;
Homan, OJ ;
Stemmer, A .
JOURNAL OF APPLIED PHYSICS, 1998, 84 (03) :1168-1173