Pathophysiology Associated with Traumatic Brain Injury: Current Treatments and Potential Novel Therapeutics

被引:225
作者
Pearn, Matthew L. [1 ,2 ]
Niesman, Ingrid R. [3 ,4 ]
Egawa, Junji [1 ,2 ]
Sawada, Atsushi [1 ,2 ]
Almenar-Queralt, Angels [3 ,4 ]
Shah, Sameer B. [5 ]
Duckworth, Josh L. [6 ]
Head, Brian P. [1 ,2 ]
机构
[1] Univ Calif San Diego, Dept Anesthesiol, Vet Affairs San Diego Healthcare Syst, VA Med Ctr 125, 3350 La Jolla Village Dr, San Diego, CA 92161 USA
[2] Univ Calif San Diego, Dept Anesthesiol, Sch Med, San Diego, CA 92093 USA
[3] Univ Calif San Diego, Dept Cellular & Mol Med, San Diego, CA 92093 USA
[4] Sanford Consortium Regenerat Med, San Diego, CA 92037 USA
[5] Univ Calif San Diego, UCSD Dept Orthopaed Surg & Bioengn, San Diego, CA 92093 USA
[6] Uniformed Serv Univ Hlth Sci, Dept Neurol, F Edward Hebert Sch Med, 4301 Jones Bridge Rd, Bethesda, MD 20814 USA
关键词
Traumatic brain injury; Blood-brain barrier; Neuroinflammation; Biologics; Caveolin; Membrane/lipid rafts; GROWTH CONE GUIDANCE; DEFAULT MODE NETWORK; PPAR-GAMMA AGONIST; SYNAPTIC PLASTICITY; ANIMAL-MODEL; LIPID RAFTS; ALTERNATIVE ACTIVATION; CELL TRANSPLANTATION; FUNCTIONAL RECOVERY; RANDOMIZED-TRIAL;
D O I
10.1007/s10571-016-0400-1
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Traumatic brain injury (TBI) is one of the leading causes of death of young people in the developed world. In the United States alone, 1.7 million traumatic events occur annually accounting for 50,000 deaths. The etiology of TBI includes traffic accidents, falls, gunshot wounds, sports, and combat-related events. TBI severity ranges from mild to severe. TBI can induce subtle changes in molecular signaling, alterations in cellular structure and function, and/or primary tissue injury, such as contusion, hemorrhage, and diffuse axonal injury. TBI results in blood-brain barrier (BBB) damage and leakage, which allows for increased extravasation of immune cells (i.e., increased neuroinflammation). BBB dysfunction and impaired homeostasis contribute to secondary injury that occurs from hours to days to months after the initial trauma. This delayed nature of the secondary injury suggests a potential therapeutic window. The focus of this article is on the (1) pathophysiology of TBI and (2) potential therapies that include biologics (stem cells, gene therapy, peptides), pharmacological (anti-inflammatory, antiepileptic, progrowth), and noninvasive (exercise, transcranial magnetic stimulation). In final, the review briefly discusses membrane/lipid rafts (MLR) and the MLR-associated protein caveolin (Cav). Interventions that increase Cav-1, MLR formation, and MLR recruitment of growth-promoting signaling components may augment the efficacy of pharmacologic agents or already existing endogenous neurotransmitters and neurotrophins that converge upon progrowth signaling cascades resulting in improved neuronal function after injury.
引用
收藏
页码:571 / 585
页数:15
相关论文
共 133 条
  • [21] Harnessing neuroplasticity for clinical applications
    Cramer, Steven C.
    Sur, Mriganka
    Dobkin, Bruce H.
    O'Brien, Charles
    Sanger, Terence D.
    Trojanowski, John Q.
    Rumsey, Judith M.
    Hicks, Ramona
    Cameron, Judy
    Chen, Daofen
    Chen, Wen G.
    Cohen, Leonardo G.
    deCharms, Christopher
    Duffy, Charles J.
    Eden, Guinevere F.
    Fetz, Eberhard E.
    Filart, Rosemarie
    Freund, Michelle
    Grant, Steven J.
    Haber, Suzanne
    Kalivas, Peter W.
    Kolb, Bryan
    Kramer, Arthur F.
    Lynch, Minda
    Mayberg, Helen S.
    McQuillen, Patrick S.
    Nitkin, Ralph
    Pascual-Leone, Alvaro
    Reuter-Lorenz, Patricia
    Schiff, Nicholas
    Sharma, Anu
    Shekim, Lana
    Stryker, Michael
    Sullivan, Edith V.
    Vinogradov, Sophia
    [J]. BRAIN, 2011, 134 : 1591 - 1609
  • [22] Magnetic micelles for DNA delivery to rat brains after mild traumatic brain injury
    Das, Mahasweta
    Wang, Chunyan
    Bedi, Raminder
    Mohapatra, Shyam S.
    Mohapatra, Subhra
    [J]. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE, 2014, 10 (07) : 1539 - 1548
  • [23] New perspectives on central and peripheral immune responses to acute traumatic brain injury
    Das, Mahasweta
    Mohapatra, Subhra
    Mohapatra, Shyam S.
    [J]. JOURNAL OF NEUROINFLAMMATION, 2012, 9
  • [24] Astrocytic Dysfunction in Epileptogenesis: Consequence of Altered Potassium and Glutamate Homeostasis?
    David, Yaron
    Cacheaux, Luisa P.
    Ivens, Sebastian
    Lapilover, Ezequiel
    Heinemann, Uwe
    Kaufer, Daniela
    Friedman, Alon
    [J]. JOURNAL OF NEUROSCIENCE, 2009, 29 (34) : 10588 - 10599
  • [25] The F-BAR domain protein PACSIN2 associates with Rac1 and regulates cell spreading and migration
    de Kreu, Bart-Jan
    Nethe, Micha
    Fernandez-Borja, Mar
    Anthony, Eloise C.
    Hensbergen, Paul J.
    Deelder, Andre M.
    Plomann, Markus
    Hordijk, Peter L.
    [J]. JOURNAL OF CELL SCIENCE, 2011, 124 (14) : 2375 - 2388
  • [26] Acute and chronic traumatic encephalopathies: pathogenesis and biomarkers
    DeKosky, Steven T.
    Blennow, Kaj
    Ikonomovic, Milos D.
    Gandy, Sam
    [J]. NATURE REVIEWS NEUROLOGY, 2013, 9 (04) : 192 - 200
  • [27] Rac, membrane heterogeneity, caveolin and regulation of growth by integrins
    Del Pozo, Miguel A.
    Schwartz, Martin A.
    [J]. TRENDS IN CELL BIOLOGY, 2007, 17 (05) : 246 - 250
  • [28] Molecular mechanisms, biological actions, and neuropharmacology of the growth-associated protein GAP-43
    Denny, John B.
    [J]. CURRENT NEUROPHARMACOLOGY, 2006, 4 (04) : 293 - 304
  • [29] The Growth Cone Cytoskeleton in Axon Outgrowth and Guidance
    Dent, Erik W.
    Gupton, Stephanie L.
    Gertler, Frank B.
    [J]. COLD SPRING HARBOR PERSPECTIVES IN BIOLOGY, 2011, 3 (03): : 1 - 39
  • [30] Blast-Induced Brain Injury and Posttraumatic Hypotension and Hypoxemia
    DeWitt, Douglas S.
    Prough, Donald S.
    [J]. JOURNAL OF NEUROTRAUMA, 2009, 26 (06) : 877 - 887