Minimum sets forcing monochromatic triangles

被引:0
作者
Bialostocki, Arie [1 ]
Nielsen, Mark J. [1 ]
机构
[1] Univ Idaho, Moscow, ID 83843 USA
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The fundamental problem in Euclidean Ramsey theory is the following: Given a configuration C of points in R-n and an arbitrary k-coloring of R-n, does there exist a monochromatic set of points in R-n congruent to C? In this paper we focus on the case where k = n = 2 and C is the vertex set of a triangle. We will say that a triangle T is 2-Ramsey if every 2-coloring of R-2 gives a monochromatic set congruent to the vertex set of T. The foundations of Euclidean Ramsey theory were laid in a sequence of three seminal papers [2], [3], and [4]. Among the many results of these papers, the authors make the following conjecture:
引用
收藏
页码:297 / 303
页数:7
相关论文
共 50 条
[21]   Monochromatic triangles in the max-norm plane [J].
Natalchenko, Alexander ;
Sagdeev, Arsenii .
EUROPEAN JOURNAL OF COMBINATORICS, 2024, 120
[22]   TOTAL FORCING SETS AND ZERO FORCING SETS IN TREES [J].
Davila, Randy ;
Henning, Michael A. .
DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2020, 40 (03) :733-754
[23]   Monochromatic equilateral triangles in the unit distance graph [J].
Naslund, Eric .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2020, 52 (04) :687-692
[24]   MINIMUM NORM INTERPOLATION IN TRIANGLES [J].
NIELSON, G .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1980, 17 (01) :44-62
[25]   Independent sets in graphs with triangles [J].
Hofmeister, T ;
Lefmann, H .
INFORMATION PROCESSING LETTERS, 1996, 58 (05) :207-210
[26]   Approximating monochromatic triangles in a two-colored plane [J].
Nielsen, MJ .
ACTA MATHEMATICA HUNGARICA, 1997, 74 (04) :279-286
[27]   Normal approximation and fourth moment theorems for monochromatic triangles [J].
Bhattacharya, Bhaswar B. ;
Fang, Xiao ;
Yan, Han .
RANDOM STRUCTURES & ALGORITHMS, 2022, 60 (01) :25-53
[28]   Approximating Monochromatic Triangles in a Two-Colored Plane [J].
M. J. Nielsen .
Acta Mathematica Hungarica, 1997, 74 :279-286
[29]   ABELIAN FORCING SETS [J].
GALLIAN, JA ;
REID, M .
AMERICAN MATHEMATICAL MONTHLY, 1993, 100 (06) :580-582
[30]   Edge disjoint monochromatic triangles in 2-colored graphs [J].
Erdos, P ;
Faudree, RJ ;
Gould, RJ ;
Jacobson, MS ;
Lehel, J .
DISCRETE MATHEMATICS, 2001, 231 (1-3) :135-141