POSITIVE STEADY STATES AND DYNAMICS FOR A DIFFUSIVE PREDATOR-PREY SYSTEM WITH A DEGENERACY

被引:0
作者
Yang, Lu [1 ,2 ]
Zhang, Yimin [3 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China
[2] Key Lab Appl Math & Complex Syst, Lanzhou 730000, Gansu, Peoples R China
[3] Chinese Acad Sci, Wuhan Inst Phys & Math, Wuhan 430071, Peoples R China
基金
中国国家自然科学基金;
关键词
Predator-prey system; steady state solution; dynamical behavior; CROSS-DIFFUSION; BIFURCATION BRANCH; GLOBAL BIFURCATION; DISPERSAL RATES; MODEL; EVOLUTION;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we consider positive steady state solutions and dynamics for a spatially heterogeneous predator-prey system with modified Leslie-Gower and Holling-Type II schemes. The heterogeneity here is created by the degeneracy of the intra-specific pressures for the prey. By the bifurcation method, the degree theory, and a priori estimates, we discuss the existence and multiplicity of positive steady states. Moreover, by the comparison argument, we also discuss the dynamical behavior for the diffusive predator-prey system.
引用
收藏
页码:537 / 548
页数:12
相关论文
共 28 条
[1]   Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling-type II schemes [J].
Aziz-Alaoui, MA ;
Okiye, MD .
APPLIED MATHEMATICS LETTERS, 2003, 16 (07) :1069-1075
[2]   GLOBAL BIFURCATION OF POSITIVE SOLUTIONS IN SOME SYSTEMS OF ELLIPTIC-EQUATIONS [J].
BLAT, J ;
BROWN, KJ .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1986, 17 (06) :1339-1353
[3]   Qualitative analysis for a diffusive predator-prey model [J].
Chen, Bin ;
Wang, Mingxin .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 55 (03) :339-355
[4]  
Crandall M. G., 1971, J. Funct. Anal., V8, P321
[5]   Effects of certain degeneracies in the predator-prey model [J].
Dancer, EN ;
Du, YH .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2002, 34 (02) :292-314
[6]   The evolution of slow dispersal rates: a reaction diffusion model [J].
Dockery, J ;
Hutson, V ;
Mischaikow, K ;
Pernarowski, M .
JOURNAL OF MATHEMATICAL BIOLOGY, 1998, 37 (01) :61-83
[7]  
Du Y., 2005, ORDER STRUCTURE TOPO, V1
[8]   A diffusive predator-prey model in heterogeneous environment [J].
Du, YH ;
Hsu, SB .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 203 (02) :331-364
[9]   Blow-up solutions for a class of semilinear elliptic and parabolic equations [J].
Du, YH ;
Huang, QG .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1999, 31 (01) :1-18
[10]   Allee effect and bistability in a spatially heterogeneous predator-prey model [J].
Du, Yihong ;
Shi, Junping .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 359 (09) :4557-4593