Online Outlier Detection of Energy Data Streams using Incremental and Kernel PCA Algorithms

被引:0
作者
Deng, Jeremiah D. [1 ]
机构
[1] Univ Otago, Dept Informat Sci, POB 56, Dunedin 9054, New Zealand
来源
2016 IEEE 16TH INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW) | 2016年
关键词
outlier detection; incremental learning; online learning; kernel methods; principal component analysis; NOVELTY DETECTION; ANOMALY DETECTION;
D O I
10.1109/ICDMW.2016.158
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Outlier detection or anomaly detection is an important and challenging issue in data mining, even so in the domain of energy data mining where data are often collected in large amounts but with little labeled information. This paper presents a couple of online outlier detection algorithms based on principal component analysis. Novel algorithmic treatments are introduced to build incremental PCA and kernel PCA algorithms with online learning abilities. Some preliminary experimental results obtained from a real-world household consumption dataset have produced some promising performance for the proposed algorithms.
引用
收藏
页码:390 / 397
页数:8
相关论文
共 23 条
  • [1] [Anonymous], 2013, CoRR
  • [2] Chawla Sanjay, 2013, P 2013 SIAM INT C DA, DOI DOI 10.1137/1.9781611972832.21
  • [3] Chen C., 2011, P 7 AAAI C ARTIFICIA, P9
  • [4] Deng J. D., 2014, P MLSDA 2014 2 WORKS
  • [5] Fontugne R, 2013, INT CONF ACOUST SPEE, P5238, DOI 10.1109/ICASSP.2013.6638662
  • [6] Hautamäki V, 2005, LECT NOTES COMPUT SC, V3540, P978
  • [7] Haykin S., 1998, Neural Networks: A. Comprehensive Foundation
  • [8] A survey of outlier detection methodologies
    Hodge V.J.
    Austin J.
    [J]. Artificial Intelligence Review, 2004, 22 (2) : 85 - 126
  • [9] Kernel PCA for novelty detection
    Hoffmann, Heiko
    [J]. PATTERN RECOGNITION, 2007, 40 (03) : 863 - 874
  • [10] Online Kernel Principal Component Analysis: A Reduced-Order Model
    Honeine, Paul
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (09) : 1814 - 1826