Towards real-time photorealistic 3D holography with deep neural networks

被引:432
作者
Shi, Liang [1 ,2 ]
Li, Beichen [1 ,2 ]
Kim, Changil [1 ,2 ]
Kellnhofer, Petr [1 ,2 ]
Matusik, Wojciech [1 ,2 ]
机构
[1] MIT, Comp Sci & Artificial Intelligence Lab, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] MIT, Elect Engn & Comp Sci Dept, Cambridge, MA 02139 USA
关键词
COMPUTER-GENERATED HOLOGRAMS; ALGORITHM; DISPLAY; FIELD;
D O I
10.1038/s41586-020-03152-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The ability to present three-dimensional (3D) scenes with continuous depth sensation has a profound impact on virtual and augmented reality, human-computer interaction, education and training. Computer-generated holography (CGH) enables high-spatio-angular-resolution 3D projection via numerical simulation of diffraction and interference(1). Yet, existing physically based methods fail to produce holograms with both per-pixel focal control and accurate occlusion(2,3). The computationally taxing Fresnel diffraction simulation further places an explicit trade-off between image quality and runtime, making dynamic holography impractical(4). Here we demonstrate a deep-learning-based CGH pipeline capable of synthesizing a photorealistic colour 3D hologram from a single RGB-depth image in real time. Our convolutional neural network (CNN) is extremely memory efficient (below 620 kilobytes) and runs at 60 hertz for a resolution of 1,920 x 1,080 pixels on a single consumer-grade graphics processing unit. Leveraging low-power on-device artificial intelligence acceleration chips, our CNN also runs interactively on mobile (iPhone 11 Pro at 1.1 hertz) and edge (Google Edge TPU at 2.0 hertz) devices, promising real-time performance in future-generation virtual and augmented-reality mobile headsets. We enable this pipeline by introducing a large-scale CGH dataset (MIT-CGH-4K) with 4,000 pairs of RGB-depth images and corresponding 3D holograms. Our CNN is trained with differentiable wave-based loss functions(5) and physically approximates Fresnel diffraction. With an anti-aliasing phase-only encoding method, we experimentally demonstrate speckle-free, natural-looking, high-resolution 3D holograms. Our learning-based approach and the Fresnel hologram dataset will help to unlock the full potential of holography and enable applications in metasurface design(6,7), optical and acoustic tweezer-based microscopic manipulation(8-10), holographic microscopy(11) and single-exposure volumetric 3D printing(12,13).
引用
收藏
页码:234 / +
页数:20
相关论文
共 57 条
[41]   Simple and fast calculation algorithm for computer-generated hologram with wavefront recording plane [J].
Shimobaba, Tomoyoshi ;
Masuda, Nobuyuki ;
Ito, Tomoyoshi .
OPTICS LETTERS, 2009, 34 (20) :3133-3135
[42]   One-step volumetric additive manufacturing of complex polymer structures [J].
Shusteff, Maxim ;
Browar, Allison E. M. ;
Kelly, Brett E. ;
Henriksson, Johannes ;
Weisgraber, Todd H. ;
Panas, Robert M. ;
Fang, Nicholas X. ;
Spadaccini, Christopher M. .
SCIENCE ADVANCES, 2017, 3 (12)
[43]   Lensless computational imaging through deep learning [J].
Sinha, Ayan ;
Lee, Justin ;
Li, Shuai ;
Barbastathis, George .
OPTICA, 2017, 4 (09) :1117-1125
[44]   End-to-end Optimization of Optics and Image Processing for Achromatic Extended Depth of Field and Super-resolution Imaging [J].
Sitzmann, Vincent ;
Diamond, Steven ;
Peng, Yifan ;
Dun, Xiong ;
Boyd, Stephen ;
Heidrich, Wolfgang ;
Heide, Felix ;
Wetzstein, Gordon .
ACM TRANSACTIONS ON GRAPHICS, 2018, 37 (04)
[45]   A photophoretic-trap volumetric display [J].
Smalley, D. E. ;
Nygaard, E. ;
Squire, K. ;
Van Wagoner, J. ;
Rasmussen, J. ;
Gneiting, S. ;
Qaderi, K. ;
Goodsell, J. ;
Rogers, W. ;
Lindsey, M. ;
Costner, K. ;
Monk, A. ;
Pearson, M. ;
Haymore, B. ;
Peatross, J. .
NATURE, 2018, 553 (7689) :486-+
[46]   Computer-generated holograms by multiple wavefront recording plane method with occlusion culling [J].
Symeonidou, Athanasia ;
Blinder, David ;
Munteanu, Adrian ;
Schelkens, Peter .
OPTICS EXPRESS, 2015, 23 (17) :22149-22161
[47]   COMPUTER-GENERATED HOLOGRAMS OF TILTED PLANES BY A SPATIAL-FREQUENCY APPROACH [J].
TOMMASI, T ;
BIANCO, B .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1993, 10 (02) :299-305
[48]   Review of fast methods for point-based computer-generated holography [Invited] [J].
Tsang, P. W. M. ;
Poon, T. -C. ;
Wu, Y. M. .
PHOTONICS RESEARCH, 2018, 6 (09) :837-846
[49]   Calculation for computer generated hologram using ray-sampling plane [J].
Wakunami, Koki ;
Yamaguchi, Masahiro .
OPTICS EXPRESS, 2011, 19 (10) :9086-9101
[50]   Real-time photorealistic computer-generated holograms based on backward ray tracing and wavefront recording planes [J].
Wang, Yuan ;
Sang, Xinzhu ;
Chen, Zhidong ;
Li, Hui ;
Zhao, Linmin .
OPTICS COMMUNICATIONS, 2018, 429 :12-17