Towards real-time photorealistic 3D holography with deep neural networks

被引:432
作者
Shi, Liang [1 ,2 ]
Li, Beichen [1 ,2 ]
Kim, Changil [1 ,2 ]
Kellnhofer, Petr [1 ,2 ]
Matusik, Wojciech [1 ,2 ]
机构
[1] MIT, Comp Sci & Artificial Intelligence Lab, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] MIT, Elect Engn & Comp Sci Dept, Cambridge, MA 02139 USA
关键词
COMPUTER-GENERATED HOLOGRAMS; ALGORITHM; DISPLAY; FIELD;
D O I
10.1038/s41586-020-03152-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The ability to present three-dimensional (3D) scenes with continuous depth sensation has a profound impact on virtual and augmented reality, human-computer interaction, education and training. Computer-generated holography (CGH) enables high-spatio-angular-resolution 3D projection via numerical simulation of diffraction and interference(1). Yet, existing physically based methods fail to produce holograms with both per-pixel focal control and accurate occlusion(2,3). The computationally taxing Fresnel diffraction simulation further places an explicit trade-off between image quality and runtime, making dynamic holography impractical(4). Here we demonstrate a deep-learning-based CGH pipeline capable of synthesizing a photorealistic colour 3D hologram from a single RGB-depth image in real time. Our convolutional neural network (CNN) is extremely memory efficient (below 620 kilobytes) and runs at 60 hertz for a resolution of 1,920 x 1,080 pixels on a single consumer-grade graphics processing unit. Leveraging low-power on-device artificial intelligence acceleration chips, our CNN also runs interactively on mobile (iPhone 11 Pro at 1.1 hertz) and edge (Google Edge TPU at 2.0 hertz) devices, promising real-time performance in future-generation virtual and augmented-reality mobile headsets. We enable this pipeline by introducing a large-scale CGH dataset (MIT-CGH-4K) with 4,000 pairs of RGB-depth images and corresponding 3D holograms. Our CNN is trained with differentiable wave-based loss functions(5) and physically approximates Fresnel diffraction. With an anti-aliasing phase-only encoding method, we experimentally demonstrate speckle-free, natural-looking, high-resolution 3D holograms. Our learning-based approach and the Fresnel hologram dataset will help to unlock the full potential of holography and enable applications in metasurface design(6,7), optical and acoustic tweezer-based microscopic manipulation(8-10), holographic microscopy(11) and single-exposure volumetric 3D printing(12,13).
引用
收藏
页码:234 / +
页数:20
相关论文
共 57 条
[1]  
Benton S.A., 2008, Holographic Imaging, DOI DOI 10.1038/srep06211
[2]  
Bjelkhagen H. I., 2011, JR PRACTICAL HOLOGRA, V7957, P13
[3]   Improved layer-based method for rapid hologram generation and real-time interactive holographic display applications [J].
Chen, J-S. ;
Chu, D. P. .
OPTICS EXPRESS, 2015, 23 (14) :18143-18155
[4]   Describing Textures in the Wild [J].
Cimpoi, Mircea ;
Maji, Subhransu ;
Kokkinos, Iasonas ;
Mohamed, Sammy ;
Vedaldi, Andrea .
2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, :3606-3613
[5]   The Synthesizability of Texture Examples [J].
Dai, Dengxin ;
Riemenschneider, Hayko ;
Van Gool, Luc .
2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, :3027-3034
[6]  
Eybposh M. H., 2020, OPTICS BRAIN BTU2C 2
[7]   Large real-time holographic 3D displays: enabling components and results [J].
Haeussler, R. ;
Gritsai, Y. ;
Zschau, E. ;
Missbach, R. ;
Sahm, H. ;
Stock, M. ;
Stolle, H. .
APPLIED OPTICS, 2017, 56 (13) :F45-F52
[8]   Time-multiplexed light field synthesis via factored Wigner distribution function [J].
Hamann, Stephen ;
Shi, Liang ;
Solgaard, Olav ;
Wetzstein, Gordon .
OPTICS LETTERS, 2018, 43 (03) :599-602
[9]   Acceleration of hologram generation by optimizing the arrangement of wavefront recording planes [J].
Hasegawa, Naotaka ;
Shimobaba, Tomoyoshi ;
Kakue, Takashi ;
Ito, Tomoyoshi .
APPLIED OPTICS, 2017, 56 (01) :A97-A103
[10]   A volumetric display for visual, tactile and audio presentation using acoustic trapping [J].
Hirayama, Ryuji ;
Plasencia, Diego Martinez ;
Masuda, Nobuyuki ;
Subramanian, Sriram .
NATURE, 2019, 575 (7782) :320-+