2-D-Nonlinear Electrothermal Model for Investigating the Self-Heating Effect in GAAFET Transistors

被引:17
作者
Belkhiria, Maissa [1 ]
Echouchene, Fraj [1 ]
Jaba, Nejeh [1 ]
Bajahzar, Abdullah [2 ]
Belmabrouk, Hafedh [1 ,3 ]
机构
[1] Univ Monastir, Fac Sci Monastir, Lab Elect & Microelect, Monastir 5019, Tunisia
[2] Majmaah Univ, Coll Sci Zulfi, Dept Comp Sci & Informat, Al Majmaah 15341, Saudi Arabia
[3] Majmaah Univ, Coll Sci Zulfi, Dept Phys, Al Majmaah 15341, Saudi Arabia
关键词
Mathematical model; Heating systems; MOSFET; Semiconductor device modeling; Logic gates; Numerical models; Gallium arsenide; Cattaneo and Vernotte (CV) model; dual-metal surrounding gate (DMSG); electrothermal investigation; numerical simulation; single-metal surrounding gate (SMSG); triple-metal surrounding gate (TMSG);
D O I
10.1109/TED.2020.3048919
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The objective of the present study is to analyze the heat transfer in the gate-all-around (GAA) MOSFETs based on the Cattaneo and Vernotte (CV) model due to the finite heat propagation speed in these nanodevices. The derivation of the CV model from the Boltzmann transport equation (BTE) is presented. Using the finite-element method, the nonlinear heat conduction model coupled with Poisson and continuity equations has been numerically solved to predict the self-heating effect (SHE) in GAA MOSFET. The CV model is applied in several structures, namely, single-metal surrounding gate (SMSG), dual-metal surrounding gate (DMSG), and triple-metal surrounding gate (TMSG). The obtained results are also compared with those calculated with the Fourier law. The temporal evolution and spatial distribution of the temperature and heat flux have been investigated. It is seen that the oscillatory behavior of the temperature using the CV model is strengthened for the TMSG structure and by increasing the relaxation time. Furthermore, the TMSG structure leads to an important increase in the temperature inside the device.
引用
收藏
页码:954 / 961
页数:8
相关论文
共 38 条
[1]   FINITE-ELEMENT METHODS IN SEMICONDUCTOR-DEVICE SIMULATION [J].
BARNES, JJ ;
LOMAX, RJ .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 1977, 24 (08) :1082-1089
[2]   Scaling of Trigate Junctionless Nanowire MOSFET With Gate Length Down to 13 nm [J].
Barraud, S. ;
Berthome, M. ;
Coquand, R. ;
Casse, M. ;
Ernst, T. ;
Samson, M. -P. ;
Perreau, P. ;
Bourdelle, K. K. ;
Faynot, O. ;
Poiroux, T. .
IEEE ELECTRON DEVICE LETTERS, 2012, 33 (09) :1225-1227
[3]   Impact of High-k Gate Dielectric on Self-Heating Effects in PiFETs Structure [J].
Belkhiria, Maissa ;
Echouchene, Fraj ;
Jaba, Nejeh ;
Bajahzar, Abdullah ;
Belmabrouk, Hafedh .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2020, 67 (09) :3522-3529
[4]   Interfacial heat transport across multilayer nanofilms in ballistic-diffusive regime [J].
Belmabrouk, Hafedh ;
Rezgui, Houssem ;
Nasri, Faouzi ;
Ben Aissa, Mohamed Fadhel ;
Guizani, Amen Allah .
EUROPEAN PHYSICAL JOURNAL PLUS, 2020, 135 (01)
[5]   Multidimensional Nano Heat Conduction in Cylindrical Transistors [J].
Ben Aissa, Mohamed Fadhel ;
Nasri, Faouzi ;
Belmabrouk, Hafedh .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2017, 64 (12) :5236-5241
[6]  
CATTANEO C, 1958, CR HEBD ACAD SCI, V247, P431
[7]   From Boltzmann transport equation to single-phase-lagging heat conduction [J].
Cheng, Lin ;
Xu, Mingtian ;
Wang, Liqiu .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2008, 51 (25-26) :6018-6023
[8]  
Chhabria VA, 2019, INT SYM QUAL ELECT, P235, DOI [10.1109/ISQED.2019.8697786, 10.1109/isqed.2019.8697786]
[9]   Analytical approach of a nanoscale triple-material surrounding gate (TMSG) MOSFETs for reduced short-channel effects [J].
Dhanaselvam, P. Suveetha ;
Balamurugan, N. B. .
MICROELECTRONICS JOURNAL, 2013, 44 (05) :400-404
[10]   High performance fully-depleted tri-gate CMOS transistors [J].
Doyle, BS ;
Datta, S ;
Doczy, M ;
Hareland, S ;
Jin, B ;
Kavalieros, J ;
Linton, T ;
Murthy, A ;
Rios, R ;
Chau, R .
IEEE ELECTRON DEVICE LETTERS, 2003, 24 (04) :263-265