Monomial Ideals with Tiny Squares and Freiman Ideals

被引:2
作者
Al-Ayyoub, Ibrahim [1 ,2 ]
Nasernejad, Mehrdad [3 ]
机构
[1] Sultan Qaboos Univ, Dept Math, POB 31, Muscat, Oman
[2] Jordan Univ Sci & Technol, Dept Math & Stat, POB 3030, Irbid 22110, Jordan
[3] Khayyam Univ, Dept Math, Mashhad, Razavi Khorasan, Iran
关键词
Freiman ideal; number of generator; power of ideal; Ratliff-Rush closure;
D O I
10.21136/CMJ.2021.0124-20
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide a construction of monomial ideals in R = K[x, y] such that mu(I-2) < mu(I), where mu denotes the least number of generators. This construction generalizes the main result of S. Eliahou, J. Herzog, M. Mohammadi Saem (2018). Working in the ring R, we generalize the definition of a Freiman ideal which was introduced in J. Herzog, G. Zhu (2019) and then we give a complete characterization of such ideals. A particular case of this characterization leads to some further investigations on mu(I-k) that generalize some results of S. Eliahou, J. Herzog, M. Mohammadi Saem (2018), J. Herzog, M. Mohammadi Saem, N. Zamani (2019), and J. Herzog, A. Asloob Qureshi, M. Mohammadi Saem (2019).
引用
收藏
页码:847 / 864
页数:18
相关论文
共 11 条
  • [1] Al-Ayyoub I., 2020, J ALGEBRA APPL, V19
  • [2] Al-Ayyoub I., 2020, J ALGEBRA APPL, V19
  • [3] AN ALGORITHM FOR COMPUTING THE RATLIFF-RUSH CLOSURE
    Al-Ayyoub, Ibrahim
    [J]. JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2009, 8 (04) : 521 - 532
  • [4] Decker W., 2015, SINGULAR 4 0 2 COMPU
  • [5] Monomial ideals with tiny squares
    Eliahou, Shalom
    Herzog, Juergen
    Saem, Maryam Mohammadi
    [J]. JOURNAL OF ALGEBRA, 2018, 514 : 99 - 112
  • [6] Freiman G.A., 1973, Translations of mathematical monographs
  • [7] Herzog J, 2011, MONOMIAL IDEALS, DOI [10.1007/978-0-85729-106-6, DOI 10.1007/978-0-85729-106-6]
  • [8] The number of generators of the powers of an ideal
    Herzog, Juergen
    Saem, Maryam Mohammadi
    Zamani, Naser
    [J]. INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2019, 29 (05) : 827 - 847
  • [9] The fiber cone of a monomial ideal in two variables
    Herzog, Juergen
    Qureshi, Ayesha Asloob
    Saem, Maryam Mohammadi
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 2019, 94 : 52 - 69
  • [10] Freiman ideals
    Herzog, Juergen
    Zhu, Guangjun
    [J]. COMMUNICATIONS IN ALGEBRA, 2019, 47 (01) : 407 - 423