H+ ion-induced damage and etching of multilayer graphene in H2 plasmas

被引:18
作者
Davydova, A. [1 ]
Despiau-Pujo, E. [1 ]
Cunge, G. [1 ]
Graves, D. B. [2 ]
机构
[1] Univ Grenoble Alpes, CNRS, CEA Leti Minatec, LTM, F-38054 Grenoble, France
[2] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA
关键词
REVERSIBLE HYDROGENATION; MOLECULAR-DYNAMICS; TRILAYER GRAPHENE; SIMULATIONS; STORAGE; SURFACE;
D O I
10.1063/1.4979023
中图分类号
O59 [应用物理学];
学科分类号
摘要
H+ ion-induced damage of multilayer graphene (MLG) is investigated using Molecular Dynamics simulations as H-2 plasmas could provide a possible route to pattern graphene. Low-energy (5-25 eV) H+ cumulative bombardment of ABA-stacked MLG samples shows an increase of the hydrogenation rate with the ion dose and ion energy. At 5 eV, the H coverage grows with the ion fluence only on the upper-side of the top layer but saturates around 35%. Hydrogenation of multilayers and carbon etching are observed at higher energies. Layer-by-layer peeling/erosion of the MLG sample is observed at 10 eV and occurs in two phases: the MLG sample is first hydrogenated before carbon etching starts via the formation of CHx (similar to 60%) and C2Hx (similar to 30%) by-products. A steady state is reached after an ion dose of similar to 5 x 10(16) H+/cm(2), as evidenced by a constant C etch yield (similar to 0.02C/ion) and the saturation of the hydrogenation rate. At 25 eV, an original etching mechanism-lifting-off the entire top layer-is observed at low fluences due to the accumulation of H-2 gas in the interlayer space and the absence of holes/vacancies in the top layer. However, as the underneath layers contain more defects and holes, this Smartcut-like mechanism cannot be not repeated and regular ion-assisted chemical etching is observed at higher fluences, with a yield of similar to 0.05C/ion.
引用
收藏
页数:9
相关论文
共 54 条
[1]   Theoretical investigation of the effect of graphite interlayer spacing on hydrogen absorption [J].
Aga, Rachel S. ;
Fu, C. L. ;
Krcmar, Maja ;
Morris, James R. .
PHYSICAL REVIEW B, 2007, 76 (16)
[2]   Hydrogen-graphite interaction: Experimental evidences of an adsorption barrier [J].
Areou, E. ;
Cartry, G. ;
Layet, J. -M. ;
Angot, T. .
JOURNAL OF CHEMICAL PHYSICS, 2011, 134 (01)
[3]   The generic nature of the Smart-Cut® process for thin film transfer [J].
Aspar, B ;
Moriceau, H ;
Jalaguier, E ;
Lagahe, C ;
Soubie, A ;
Biasse, B ;
Papon, AM ;
Claverie, A ;
Grisolia, J ;
Benassayag, G ;
Letertre, F ;
Rayssac, O ;
Barge, T ;
Maleville, C ;
Ghyselen, B .
JOURNAL OF ELECTRONIC MATERIALS, 2001, 30 (07) :834-840
[4]  
Aspar B., 2001, U.S. patent, Patent No. 63003468B1
[5]   MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH [J].
BERENDSEN, HJC ;
POSTMA, JPM ;
VANGUNSTEREN, WF ;
DINOLA, A ;
HAAK, JR .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3684-3690
[6]   Hydrogen transport on graphene: Competition of mobility and desorption [J].
Borodin, V. A. ;
Vehvilainen, T. T. ;
Ganchenkova, M. G. ;
Nieminen, R. M. .
PHYSICAL REVIEW B, 2011, 84 (07)
[7]   A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons [J].
Brenner, DW ;
Shenderova, OA ;
Harrison, JA ;
Stuart, SJ ;
Ni, B ;
Sinnott, SB .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2002, 14 (04) :783-802
[8]   Fully Integrated Graphene and Carbon Nanotube Interconnects for Gigahertz High-Speed CMOS Electronics [J].
Chen, Xiangyu ;
Akinwande, Deji ;
Lee, Kyeong-Jae ;
Close, Gael F. ;
Yasuda, Shinichi ;
Paul, Bipul C. ;
Fujita, Shinobu ;
Kong, Jing ;
Wong, H. -S. Philip .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2010, 57 (11) :3137-3143
[9]   Etching mechanisms of graphene nanoribbons in downstream H2 plasmas: insights from molecular dynamics simulations [J].
Davydova, A. ;
Despiau-Pujo, E. ;
Cunge, G. ;
Graves, D. B. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2015, 48 (19) :195202
[10]   Cleaning graphene: A first quantum/classical molecular dynamics approach [J].
Delfour, L. ;
Davydova, A. ;
Despiau-Pujo, E. ;
Cunge, G. ;
Graves, D. B. ;
Magaud, L. .
JOURNAL OF APPLIED PHYSICS, 2016, 119 (12)