EEG Based Hearing States Detection Using AR Modeling Techniques

被引:0
作者
Subramaniam, Kamalraj [1 ]
Paulraj, M. P. [2 ]
Divya, B. S. [1 ]
机构
[1] Karpagam Univ, Coimbatore, Tamil Nadu, India
[2] SRIT, Coimbatore, Tamil Nadu, India
来源
2016 IEEE EMBS CONFERENCE ON BIOMEDICAL ENGINEERING AND SCIENCES (IECBES) | 2016年
关键词
Electroencephalogram (EEG); auditory evoked potential; Hearing threshold; Parametric modeling technique; EXTRACTION; RESPONSES; SIGNALS;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In this paper, a simple method to determine the hearing threshold state of a subject using the parametric model of EEG time series signal has been investigated. The proposed autoregressive (AR) pole-tracking algorithm tracks the position of the poles and extracts the upper and lower hearing threshold factors of a subject. From the results, for abnormal hearing subjects, the hearing-threshold values are about 40-50 % higher than the normal hearing subjects. The results also show that the hearing threshold factors obtained using AR modeling clearly distinguishes the normal and abnormal hearing states across 20 subjects. The results obtained are promising and it can be used to determine the hearing-threshold state for newborns, infants, and multiple handicaps, a person who lacks verbal communication and behavioral response to the sound stimulation.
引用
收藏
页码:513 / 521
页数:9
相关论文
共 31 条
  • [1] NEW LOOK AT STATISTICAL-MODEL IDENTIFICATION
    AKAIKE, H
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) : 716 - 723
  • [2] Begleite H., 1986, J CLIN NEUROPHYSIOL, V3, P270
  • [3] A study on the optimum order of autoregressive models for heart rate variability
    Boardman, A
    Schlindwein, FS
    Rocha, AP
    Leite, A
    [J]. PHYSIOLOGICAL MEASUREMENT, 2002, 23 (02) : 325 - 336
  • [4] SPECTRA OF AUDITORY BRAIN-STEM RESPONSES AND SPONTANEOUS EEG
    BOSTON, JR
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 1981, 28 (04) : 334 - 341
  • [5] Limitations in the Rapid Extraction of Evoked Potentials Using Parametric Modeling
    De Silva, A. C.
    Sinclair, N. C.
    Liley, D. T. J.
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2012, 59 (05) : 1462 - 1471
  • [6] AUTOMATED AUDITORY BRAIN-STEM RESPONSE INTERPRETATION
    DELGADO, RE
    OZDAMAR, O
    [J]. IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE, 1994, 13 (02): : 227 - 237
  • [7] Analysis of EEG signals during epileptic and alcoholic states using AR modeling techniques
    Faust, O.
    Acharya, R. U.
    Allen, A. R.
    Lin, C. M.
    [J]. IRBM, 2008, 29 (01) : 44 - 52
  • [8] PEAK IDENTIFICATION OF AUDITORY BRAIN-STEM RESPONSES WITH MULTIFILTERS AND ATTRIBUTED AUTOMATON
    GRONFORS, T
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 1993, 40 (02) : 83 - 87
  • [9] AR spectral analysis of EEG signals by using maximum likelihood estimation
    Güler, I
    Kiymik, MK
    Akin, M
    Alkan, A
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2001, 31 (06) : 441 - 450
  • [10] Hall JW, 1991, HDB AUDITORY EVOKED