An Unsupervised Distance Learning Framework for Multimedia Retrieval

被引:11
作者
Valem, Lucas Pascotti [1 ]
Guimaraes Pedronette, Daniel Carlos [1 ]
机构
[1] Sao Paulo State Univ UNESP, Dept Stat Appl Math & Comp, Rio Claro, Brazil
来源
PROCEEDINGS OF THE 2017 ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL (ICMR'17) | 2017年
基金
巴西圣保罗研究基金会;
关键词
content-based image retrieval; unsupervised learning; re-ranking; rank-aggregation;
D O I
10.1145/3078971.3079017
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Due to the increasing availability of image and multimedia collections, unsupervised post-processing methods, which are capable of improving the effectiveness of retrieval results without the need of user intervention, have become indispensable. This paper presents the Unsupervised Distance Learning Framework (UDLF), a software which enables an easy use and evaluation of unsupervised learning methods. The framework defines a broad model, allowing the implementation of different unsupervised methods and supporting diverse file formats for input and output. Seven different unsupervised methods are initially available in the framework. Executions and experiments can be easily defined by setting a configuration file. The framework also includes the evaluation of the retrieval results exporting visual output results, computing effectiveness and efficiency measures. The source-code is public available, such that anyone can freely access, use, change, and share the software under the terms of the GPLv2 license.
引用
收藏
页码:107 / 111
页数:5
相关论文
共 27 条
  • [1] [Anonymous], 2006, CVPR
  • [2] [Anonymous], 2011, P 19 ACM INT C MULT
  • [3] Sparse Contextual Activation for Efficient Visual Re-Ranking
    Bai, Song
    Bai, Xiang
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (03) : 1056 - 1069
  • [4] Image retrieval: Ideas, influences, and trends of the new age
    Datta, Ritendra
    Joshi, Dhiraj
    Li, Jia
    Wang, James Z.
    [J]. ACM COMPUTING SURVEYS, 2008, 40 (02)
  • [5] Diffusion Processes for Retrieval Revisited
    Donoser, Michael
    Bischof, Horst
    [J]. 2013 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2013, : 1320 - 1327
  • [6] A graph-based ranked-list model for unsupervised distance learning on shape retrieval
    Guimaraes Pedronette, Daniel Carlos
    Almeida, Jurandy
    Torres, Ricardo da S.
    [J]. PATTERN RECOGNITION LETTERS, 2016, 83 : 357 - 367
  • [7] A correlation graph approach for unsupervised manifold learning in image retrieval tasks
    Guimaraes Pedronette, Daniel Carlos
    Torres, Ricardo da S.
    [J]. NEUROCOMPUTING, 2016, 208 : 66 - 79
  • [8] Unsupervised manifold learning using Reciprocal kNN Graphs in image re-ranking and rank aggregation tasks
    Guimaraes Pedronette, Daniel Carlos
    Penatti, Otavio A. B.
    Torres, Ricardo da S.
    [J]. IMAGE AND VISION COMPUTING, 2014, 32 (02) : 120 - 130
  • [9] Exploiting contextual information for image re-ranking and rank aggregation
    Guimaraes Pedronette, Daniel Carlos
    Torres, Ricardo da S.
    [J]. INTERNATIONAL JOURNAL OF MULTIMEDIA INFORMATION RETRIEVAL, 2012, 1 (02) : 115 - 128
  • [10] Image re-ranking and rank aggregation based on similarity of ranked lists
    Guimaraes Pedronette, Daniel Carlos
    Torres, Ricardo da S.
    [J]. PATTERN RECOGNITION, 2013, 46 (08) : 2350 - 2360