Distance-regular Cayley graphs on dihedral groups

被引:18
作者
Miklavic, Stefko [1 ]
Potocnik, Primoz
机构
[1] Univ Primorska, Fac Educ, Dept Math & Comp Sci, Koper 6000, Slovenia
[2] Inst Math Phys & Mech, SI-1000 Ljubljana, Slovenia
关键词
Cayley graph; distance-regular graph; dihedral group; dihedrant; difference set;
D O I
10.1016/j.jctb.2006.03.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main result of this article is a classification of distance-regular Cayley graphs on dihedral groups. There exist four obvious families of such graphs, which are called trivial. These are: complete graphs, complete multipartite graphs, complete bipartite graphs with the edges of a 1-factor removed, and cycles. It is proved that every non-trivial distance-regular Cayley graph on a dihedral group is bipartite, non-antipodal, has diameter 3 and arises either from a cyclic difference set, or possibly (if any such exists) from a dihedral difference set satisfying some additional conditions. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:14 / 33
页数:20
相关论文
共 15 条
[1]  
Bannai E, 1984, Algebraic Combinatorics I: Association Schemes
[2]  
Bridges WG., 1979, Ars Combinatoria, V8, P143
[3]  
Brouwer AE, 1998, DISTANCE REGULAR GRA
[4]  
Cameron P.J., 1999, London Mathematical Society Student Texts, V45
[5]   Relative difference sets fixed by inversion and Cayley graphs [J].
Chen, YQ ;
Li, CH .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2005, 111 (01) :165-173
[6]  
Dixon JD., 1996, PERMUTATION GROUPS
[7]   DISTANCE REGULAR COVERS OF THE COMPLETE GRAPH [J].
GODSIL, CD ;
HENSEL, AD .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1992, 56 (02) :205-238
[8]  
Leung K.H., 1992, DESIGN CODE CRYPTOGR, V1, P333
[9]   On 2-arc-transitivity of Cayley graphs [J].
Marusic, D .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2003, 87 (01) :162-196
[10]   Distance-regular circulants [J].
Miklavic, S ;
Potocnik, P .
EUROPEAN JOURNAL OF COMBINATORICS, 2003, 24 (07) :777-784