According to a theorem of A. V. Bogomolnaya, F. L. Nazarov and S. E. Rukshin, if n points are given inside a convex n-gon, then the points and the sides of the polygon can be numbered from 1 to n so that the triangles spanned by the ith point and the ith side (i=1,...,n) cover the polygon. In this paper, we prove that the same can be done without assuming that the given points are inside the convex n-gon. We also show that in the general case at least [(n/3)] mutually nonoverlapping triangles can be constructed in the same manner.