Recursive parametric tests for multichannel adaptive signal detection

被引:0
作者
Sohn, Kwang June [1 ]
Li, Hongbin [1 ]
Himed, Braham [2 ]
机构
[1] Stevens Inst Technol, Dept Elect & Comp Engn, Hoboken, NJ 07030 USA
[2] Labs Inc, Reston, VA 20191 USA
来源
2006 IEEE 12TH DIGITAL SIGNAL PROCESSING WORKSHOP & 4TH IEEE SIGNAL PROCESSING EDUCATION WORKSHOP, VOLS 1 AND 2 | 2006年
关键词
multichannel signal detection; space-time adaptive processing (STAP); multichannel Levinson algorithm; Rao test; generalized likelihood ratio test (GLRT);
D O I
10.1109/DSPWS.2006.265474
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The parametric Rao and generalized likelihood ratio test (GLRT) detectors, recently developed by exploiting a multichannel autoregressive (AR) model for the disturbance, has been shown to perform well with very limited or no training data. The AR model order, however, should be estimated by some model order selection technique. Standard non-recursive implementation of the parametric detectors is computationally intensive, since the parameters have to be estimated for each possible model order. This paper presents recursive versions of the parametric detectors using the multichannel Levinson algorithm, which is used to recursively solve the multichannel Yule-Walker equations and find parameter estimates used by these detectors. Estimation of the AR model order can also be naturally integrated since the multichannel Levinson algorithm yields parameter estimates at every recursion (i.e., for every AR model order). Numerical results show that the proposed recursive parametric tests that assume no knowledge about the model order perform quite close to the corresponding non-recursive parametric detectors at reduced computational complexity, even though the latter requires exact knowledge of the model order.
引用
收藏
页码:500 / 505
页数:6
相关论文
共 50 条
[41]   Wald tests for direction detection in noise and interference [J].
Wenjuan Li ;
Haibo Tong ;
Kai Li ;
Yang Yang ;
Weijian Liu .
Multidimensional Systems and Signal Processing, 2018, 29 :1563-1577
[42]   Research on bayesian radar adaptive detection [J].
Zhou, Yu ;
Zhang, Linrang ;
Liu, Nan .
Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2012, 39 (01) :28-33
[43]   Rao tests for distributed target detection in interference and noise [J].
Liu, Weijian ;
Liu, Jun ;
Huang, Lei ;
Zou, Dujian ;
Wang, Yongliang .
SIGNAL PROCESSING, 2015, 117 :333-342
[44]   Tunable Adaptive Detection in Colocated MIMO Radar [J].
Liu, Jun ;
Zhou, Shenghua ;
Liu, Weijian ;
Zheng, Jibin ;
Liu, Hongwei ;
Li, Jian .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2018, 66 (04) :1080-1092
[45]   An Adaptive Target Detection Architecture for Mismatched Signals [J].
Jin, Yuxi ;
Yin, Chaoran ;
Wang, Tianqi ;
Hao, Chengpeng ;
Orlando, Danilo .
IEEE SIGNAL PROCESSING LETTERS, 2025, 32 :1860-1864
[46]   A new parametric adaptive detector with mismatched signals rejection capability in AR model interference [J].
Dorostgan, Mehdi ;
Taban, Mohammad Reza .
DIGITAL SIGNAL PROCESSING, 2021, 109
[47]   A Tunable Adaptive Detector for Distributed Targets When Signal Mismatch Occurs [J].
Cui, Yufeng ;
Wang, Yongliang ;
Liu, Weijian ;
Du, Qinglei ;
Zhang, Xichuan ;
Li, Xuhui .
JOURNAL OF SYSTEMS ENGINEERING AND ELECTRONICS, 2023, 34 (04) :873-878
[48]   Parametric space-time detection and range estimation of a small target [J].
Hao, Chengpeng ;
Gazor, Saeed ;
Orlando, Danilo ;
Foglia, Goffredo ;
Yang, Jun .
IET RADAR SONAR AND NAVIGATION, 2015, 9 (02) :221-231
[49]   BAYESIAN RAO AND WALD TEST FOR RADAR ADAPTIVE DETECTION [J].
Zhou, Yu ;
Zhang, Lin-rang .
2010 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2010, :2782-2785
[50]   Persymmetric Adaptive Array Detection of Spread Spectrum Signals [J].
Liu, Jun ;
Zhou, Wuyang ;
Zaimbashi, Amir ;
Li, Hongbin .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (12) :7828-7834