Enhanced Methane Adsorption in Catenated Metal-organic Frameworks: A Molecular Simulation Study

被引:8
作者
Xue Chunyu [1 ]
Zhou Zi'e [1 ]
Yang Qingyuan [1 ]
Zhong Chongli [1 ]
机构
[1] Beijing Univ Chem Technol, Dept Chem Engn, Lab Computat Chem, Beijing 100029, Peoples R China
基金
中国国家自然科学基金;
关键词
methane; adsorption; catenation; metal-organic frameworks; molecular simulation; MONTE-CARLO-SIMULATION; HYDROGEN ADSORPTION; STORAGE; SEPARATION; DIFFUSION; DESIGN; CH4; CO2;
D O I
10.1016/S1004-9541(08)60247-5
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
A systematic molecular simulation study was performed to investigate the effect of catenation on methane adsorption in metal-organic frameworks (MOFs). Four pairs of isoreticular MOFs (IRMOFs) with and without catenation were adopted and their capacities for methane adsorption were compared at room temperature. The present work showed that catenation could greatly enhance the storage capacity of methane in MOFs, due to the formation of additional small pores and adsorption sites formed by the catenation of frameworks. In addition, the simulation results obtained at 298 K and 3.5 MPa showed that catenated MOFs could easily meet the requirement for methane storage in porous materials.
引用
收藏
页码:580 / 584
页数:5
相关论文
共 29 条
[1]  
Allen MP., 2017, COMPUTER SIMULATION
[2]   Storage and separation of CO2 and CH4 in silicalite, C168 schwarzite, and IRMOF-1:: A comparative study from monte carlo simulation [J].
Babarao, Ravichandar ;
Hu, Zhongqiao ;
Jiang, Jianwen ;
Chempath, Shaji ;
Sandler, Stanley I. .
LANGMUIR, 2007, 23 (02) :659-666
[3]   Different adsorption behaviors of methane and carbon dioxide in the isotypic nanoporous metal terephthalates MIL-53 and MIL-47 [J].
Bourrelly, S ;
Llewellyn, PL ;
Serre, C ;
Millange, F ;
Loiseau, T ;
Férey, G .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (39) :13519-13521
[4]   Calorimetric heats of adsorption and adsorption isotherms .2. O-2, N-2, Ar, CO2, CH4, C2H6, and SF6 on NaX, H-ZSM-5, and Na-ZSM-5 zeolites [J].
Dunne, JA ;
Rao, M ;
Sircar, S ;
Gorte, RJ ;
Myers, AL .
LANGMUIR, 1996, 12 (24) :5896-5904
[5]   Design of new materials for methane storage [J].
Düren, T ;
Sarkisov, L ;
Yaghi, OM ;
Snurr, RQ .
LANGMUIR, 2004, 20 (07) :2683-2689
[6]   Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage [J].
Eddaoudi, M ;
Kim, J ;
Rosi, N ;
Vodak, D ;
Wachter, J ;
O'Keeffe, M ;
Yaghi, OM .
SCIENCE, 2002, 295 (5554) :469-472
[7]   Adsorption of gases in metal organic materials: Comparison of simulations and experiments [J].
Garberoglio, G ;
Skoulidas, AI ;
Johnson, JK .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (27) :13094-13103
[8]   MOLECULAR SIMULATION OF METHANE AND BUTANE IN SILICALITE [J].
GOODBODY, SJ ;
WATANABE, K ;
MACGOWAN, D ;
WALTON, JPRB ;
QUIRKE, N .
JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS, 1991, 87 (13) :1951-1958
[9]   Simulations of methane adsorption and diffusion within alkoxy-functionalized IRMOFs exhibiting severely disordered crystal structures [J].
Jhon, Young H. ;
Cho, Miyoung ;
Jeon, Hak Rime ;
Park, Ilgeun ;
Chang, Rakwoo ;
Rowsell, Jesse L. C. ;
Kim, Jaheon .
JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (44) :16618-16625
[10]   Monte Carlo simulation for the adsorption and separation of linear and branched alkanes in IRMOF-1 [J].
Jiang, Jianwen ;
Sandler, Stanley I. .
LANGMUIR, 2006, 22 (13) :5702-5707