Visualizing Dynamical Neural Assemblies with a Fuzzy Synchronization Clustering Analysis

被引:1
作者
Zhou, Shu [1 ]
Wu, Yan [1 ]
Dos Santos, Claudia C. [2 ]
机构
[1] So Med Univ, Dept Neurol, Nanfang Hosp, Guangzhou 510515, Guangdong, Peoples R China
[2] Univ Toronto, St Michaels Hosp, Keenan Res Ctr, Li Ka Shing Knowledge Inst, Toronto, ON M5B 1W8, Canada
基金
中国国家自然科学基金;
关键词
Phase synchronization; Fuzzy c-mean algorithm; Clustering; Neural assembly; Event-related EEG; PHASE SYNCHRONIZATION; BRAIN; EEG; MECHANISM;
D O I
10.1007/s12021-009-9056-z
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Phase synchrony has been proposed as a possible communication mechanism between cerebral regions. The participation index method (PIM) may be used to investigate integrating structures within an oscillatory network, based on the eigenvalue decomposition of matrix of bivariate synchronization indices. However, eigenvector orthogonality between clusters may result in categorization difficulties for hub oscillators and pseudoclustering phenomenon. Here, we propose a method of fuzzy synchronization clustering analysis (FSCA) to avoid the constraint of orthogonality by combining the fuzzy c-means algorithm with the phase-locking value. Following mathematical derivation, we cross-validated the FSCA and the PIM using the same multichannel phase time series of event-related EEG from a subject performing a working memory task. Both clustering methods produced consistent findings for the qualitatively salient configuration of the original network-illustrated here by a visualization technique. In contrast to PIM, use of common virtual oscillatory centroids enabled the FSCA to reveal multiple dynamical neural assemblies as well as the unitary phase information within each assembly.
引用
收藏
页码:233 / 244
页数:12
相关论文
共 26 条
[1]   Detecting synchronization clusters in multivariate time series via coarse-graining of Markov chains [J].
Allefeld, Carsten ;
Bialonski, Stephan .
PHYSICAL REVIEW E, 2007, 76 (06)
[2]   Eigenvalue decomposition as a generalized synchronization cluster analysis [J].
Allefeld, Carsten ;
Mueller, Markus ;
Kurths, Jurgen .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2007, 17 (10) :3493-3497
[3]  
Bezdek J.C., 1981, PATTERN RECOGNITION
[4]   Identifying phase synchronization clusters in spatially extended dynamical systems [J].
Bialonski, Stephan ;
Lehnertz, Klaus .
PHYSICAL REVIEW E, 2006, 74 (05)
[5]   A mechanism for cognitive dynamics: neuronal communication through neuronal coherence [J].
Fries, P .
TRENDS IN COGNITIVE SCIENCES, 2005, 9 (10) :474-480
[6]   Phase synchronization measurements using electroencephalographic recordings - What can we really say about neuronal synchrony? [J].
Guevara, R ;
Velazquez, JLP ;
Nenadovic, V ;
Wennberg, R ;
Senjanovic, G ;
Dominguez, LG .
NEUROINFORMATICS, 2005, 3 (04) :301-313
[7]   ONLINE TRANSFORMATION OF EEG SCALP POTENTIALS INTO ORTHOGONAL SOURCE DERIVATIONS [J].
HJORTH, B .
ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY, 1975, 39 (05) :526-530
[8]   Spatial and temporal structure of phase synchronization of spontaneous alpha EEG activity [J].
Ito, J ;
Nikolaev, AR ;
van Leeuwen, C .
BIOLOGICAL CYBERNETICS, 2005, 92 (01) :54-60
[9]   Theta returns [J].
Kahana, MJ ;
Seelig, D ;
Madsen, JR .
CURRENT OPINION IN NEUROBIOLOGY, 2001, 11 (06) :739-744
[10]   Studying single-trials of phase synchronous activity in the brain [J].
Lachaux, JP ;
Rodriguez, E ;
Van Quyen, ML ;
Lutz, A ;
Martinerie, J ;
Varela, FJ .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2000, 10 (10) :2429-2439