Construction of a robust prognostic model for adult adrenocortical carcinoma: Results from bioinformatics and real-world data

被引:8
作者
Tian, Xi [1 ,2 ]
Xu, Wen-Hao [1 ,2 ]
Anwaier, Aihetaimujiang [1 ,2 ]
Wang, Hong-Kai [1 ,2 ]
Wan, Fang-Ning [1 ,2 ]
Cao, Da-Long [1 ,2 ]
Luo, Wen-Jie [1 ,2 ]
Shi, Guo-Hai [1 ,2 ]
Qu, Yuan-Yuan [1 ,2 ]
Zhang, Hai-Liang [1 ,2 ]
Ye, Ding-Wei [1 ,2 ]
机构
[1] Fudan Univ, Shanghai Canc Ctr, Dept Urol, 270 Dongan Rd, Shanghai 200032, Peoples R China
[2] Fudan Univ, Shanghai Med Coll, Dept Oncol, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
adult adrenocortical carcinoma; biomarker; predictive model; proteomics; real‐ world data; FATTY-ACID SYNTHASE; BODY-MASS INDEX; MYOCARDIAL-INFARCTION; PROSTATE-CANCER; RISK; EXPRESSION; BIOMARKERS; IRON; ASSOCIATION; VALIDATION;
D O I
10.1111/jcmm.16323
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
This study aims to construct a robust prognostic model for adult adrenocortical carcinoma (ACC) by large-scale multiomics analysis and real-world data. The RPPA data, gene expression profiles and clinical information of adult ACC patients were obtained from The Cancer Proteome Atlas (TCPA), Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA). Integrated prognosis-related proteins (IPRPs) model was constructed. Immunohistochemistry was used to validate the prognostic value of the IPRPs model in Fudan University Shanghai Cancer Center (FUSCC) cohort. 76 ACC cases from TCGA and 22 ACC cases from in NCBI's GEO database with full data for clinical information and gene expression were utilized to validate the effectiveness of the IPRPs model. Higher FASN (P = .039), FIBRONECTIN (P < .001), TFRC (P < .001), TSC1 (P < .001) expression indicated significantly worse overall survival for adult ACC patients. Risk assessment suggested significantly a strong predictive capacity of IPRPs model for poor overall survival (P < .05). IPRPs model showed a little stronger ability for predicting prognosis than Ki-67 protein in FUSCC cohort (P = .003, HR = 3.947; P = .005, HR = 3.787). In external validation of IPRPs model using gene expression data, IPRPs model showed strong ability for predicting prognosis in TCGA cohort (P = .005, HR = 3.061) and it exhibited best ability for predicting prognosis in cohort (P = .0898, HR = 2.318). This research constructed IPRPs model for predicting adult ACC patients' prognosis using proteomic data, gene expression data and real-world data and this prognostic model showed stronger predictive value than other biomarkers (Ki-67, Beta-catenin, etc) in multi-cohorts.
引用
收藏
页码:3898 / 3911
页数:14
相关论文
共 51 条
  • [1] Poly(ADP-ribose)-binding zinc finger motifs in DNA repair/checkpoint proteins
    Ahel, Ivan
    Ahel, Dragana
    Matsusaka, Takahiro
    Clark, Allison J.
    Pines, Jonathon
    Boulton, Simon J.
    West, Stephen C.
    [J]. NATURE, 2008, 451 (7174) : 81 - U12
  • [2] Body Mass Index and Metastatic Renal Cell Carcinoma: Clinical and Biological Correlations
    Albiges, Laurence
    Hakimi, A. Ari
    Xie, Wanling
    McKay, Rana R.
    Simantov, Ronit
    Lin, Xun
    Lee, Jae-Lyun
    Rini, Brian I.
    Srinivas, Sandy
    Bjarnason, Georg A.
    Ernst, Scott
    Wood, Lori A.
    Vaishamayan, Ulka N.
    Rha, Sun-Young
    Agarwal, Neeraj
    Yuasa, Takeshi
    Pal, Sumanta K.
    Bamias, Aristotelis
    Zabor, Emily C.
    Skanderup, Anders J.
    Furberg, Helena
    Fay, Andre P.
    de Velasco, Guillermo
    Preston, Mark A.
    Wilson, Kathryn M.
    Cho, Eunyoung
    McDermott, David F.
    Signoretti, Sabina
    Heng, Daniel Y. C.
    Choueiri, Toni K.
    [J]. JOURNAL OF CLINICAL ONCOLOGY, 2016, 34 (30) : 3655 - +
  • [3] Anwaier, 2021, J CELL MOL MED, P1
  • [4] MultiContrast Delayed Enhancement (MCODE) improves detection of subendocardial myocardial infarction by late gadolinium enhancement cardiovascular magnetic resonance: a clinical validation study
    Bandettini, W. Patricia
    Kellman, Peter
    Mancini, Christine
    Booker, Oscar Julian
    Vasu, Sujethra
    Leung, Steve W.
    Wilson, Joel R.
    Shanbhag, Sujata M.
    Chen, Marcus Y.
    Arai, Andrew E.
    [J]. JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCE, 2012, 14
  • [5] Adrenocortical Carcinoma in the United States Treatment Utilization and Prognostic Factors
    Bilimoria, Karl Y.
    Shen, Wen T.
    Elaraj, Dina
    Bentrern, David J.
    Winchester, David J.
    Kebebew, Electron
    Sturgeon, Cord
    [J]. CANCER, 2008, 113 (11) : 3130 - 3136
  • [6] Precision diagnostics: moving towards protein biomarker signatures of clinical utility in cancer
    Borrebaeck, Carl A. K.
    [J]. NATURE REVIEWS CANCER, 2017, 17 (03) : 199 - 204
  • [7] Combined Proteomics and Transcriptomics Identifies Carboxypeptidase B1 and Nuclear Factor κB (NF-κB) Associated Proteins as Putative Biomarkers of Metastasis in Low Grade Breast Cancer
    Bouchal, Pavel
    Dvorakova, Monika
    Roumeliotis, Theodoros
    Bortlicek, Zbynek
    Ihnatova, Ivana
    Prochazkova, Iva
    Ho, Jenny T. C.
    Maryas, Josef
    Imrichova, Hana
    Budinska, Eva
    Vyzula, Rostislav
    Garbis, Spiros D.
    Vojtesek, Borivoj
    Nenutil, Rudolf
    [J]. MOLECULAR & CELLULAR PROTEOMICS, 2015, 14 (07) : 1814 - 1830
  • [8] Brooks D, 1995, CLIN CANCER RES, V1, P1259
  • [9] Adjuvant Therapies and Patient and Tumor Characteristics Associated With Survival of Adult Patients With Adrenocortical Carcinoma
    Else, Tobias
    Williams, Andrew R.
    Sabolch, Aaron
    Jolly, Shruti
    Miller, Barbra S.
    Hammer, Gary D.
    [J]. JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM, 2014, 99 (02) : 455 - 461
  • [10] Sterol O-Acyl Transferase 1 as a Prognostic Marker of Adrenocortical Carcinoma
    Ferreira Lacombe, Amanda Meneses
    Soares, Ibere Cauduro
    de Paula Mariani, Beatriz Marinho
    Nishi, Mirian Yumie
    Bezerra-Neto, Joao Evangelista
    Charchar, Helaine da Silva
    Brondani, Vania Balderrama
    Tanno, Fabio
    Srougi, Victor
    Chambo, Jose Luiz
    Costa de Freitas, Ricardo Miguel
    Mendonca, Berenice Bilharinho
    Hoff, Ana O.
    Almeida, Madson Q.
    Weigand, Isabel
    Kroiss, Matthias
    Nogueira Zerbini, Maria Claudia
    Barisson Villares Fragoso, Maria Candida
    [J]. CANCERS, 2020, 12 (01)