Deep radiance caching: Convolutional autoencoders deeper in ray tracing

被引:14
作者
Jiang, Giulio [1 ]
Kainz, Bernhard [1 ]
机构
[1] Imperial Coll London, Dept Comp, 180 Queenss Gate, London SW7 2AZ, England
来源
COMPUTERS & GRAPHICS-UK | 2021年 / 94卷
关键词
Deep learning; Ray tracing; Radiance caching; ERROR;
D O I
10.1016/j.cag.2020.09.007
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Rendering realistic images with global illumination is a computationally demanding task and often requires dedicated hardware for feasible runtime. Recent research uses Deep Neural Networks to predict indirect lighting on image level, but such methods are commonly limited to diffuse materials and require training on each scene. We present Deep Radiance Caching (DRC), an efficient variant of Radiance Caching utilizing Convolutional Autoencoders for rendering global illumination. DRC employs a denoising neural network with Radiance Caching to support a wide range of material types, without the requirement of offline pre-computation or training for each scene. This offers high performance CPU rendering for maximum accessibility. Our method has been evaluated on interior scenes, and is able to produce high-quality images within 180 s on a single CPU. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页码:22 / 31
页数:10
相关论文
共 47 条
  • [1] [Anonymous], 2016, PHYS BASED RENDERING
  • [2] [Anonymous], 2018, P IEEE C COMP VIS PA
  • [3] Bako S, 2017, ACM T GRAPHIC, V36, DOI [10.1145/3072959.3073703, 10.1145/3072959.3073708]
  • [4] Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems
    Beck, Amir
    Teboulle, Marc
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2009, 18 (11) : 2419 - 2434
  • [5] Bitterli B, 2018, RENDERING RESOURCES
  • [6] Nonlinearly Weighted First-order Regression for Denoising Monte Carlo Renderings
    Bitterli, Benedikt
    Rousselle, Fabrice
    Moon, Bochang
    Iglesias-Guitian, Jose A.
    Adler, David
    Mitchell, Kenny
    Jarosz, Wojciech
    Novak, Jan
    [J]. COMPUTER GRAPHICS FORUM, 2016, 35 (04) : 107 - 117
  • [7] A non-local algorithm for image denoising
    Buades, A
    Coll, B
    Morel, JM
    [J]. 2005 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 2, PROCEEDINGS, 2005, : 60 - 65
  • [8] RTX on-The NVIDIA Turing GPU
    Burgess, John
    [J]. IEEE MICRO, 2020, 40 (02) : 36 - 44
  • [9] Cenobi U, 2012, BATHROOM SCENE
  • [10] Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder
    Chaitanya, Chakravarty R. Alla
    Kaplanyan, Anton S.
    Schied, Christoph
    Salvi, Marco
    Lefohn, Aaron
    Nowrouzezahrai, Derek
    Aila, Timo
    [J]. ACM TRANSACTIONS ON GRAPHICS, 2017, 36 (04):