Nonlinear fractional mathematical model of tuberculosis (TB) disease with incomplete treatment under Atangana-Baleanu derivative

被引:53
|
作者
Rahman, Mati Ur [1 ]
Arfan, Muhammad [2 ]
Shah, Zahir [3 ,5 ]
Kumam, Poom [4 ,5 ,6 ]
Shutaywi, Meshal [7 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Math, 800 Dongchuan Rd, Shanghai, Peoples R China
[2] Univ Malakand, Dept Math, Dir L, Khyber Pakhtunk, Pakistan
[3] Univ Lakki Marwat, Dept Math, Lakki Marwat 28420, Khyber Pakhtunk, Pakistan
[4] King Mongkuts Univ Technol Thonburi KMUTT, KMUTT Fixed Point Res Lab, KMUTT Fixed Point Theory & Applicat Res Grp, SCL 802 Fixed Point Lab,Dept Math,Fac Sci, 126 Pracha Uthit Rd, Bangkok 10140, Thailand
[5] King Mongkuts Univ Technol Thonburi KMUTT, Ctr Excellence Theoret & Computat Sci TaCS CoE, SCL 802 Fixed Point Lab, Sci Lab Bldg,126 Pracha Uthit Rd, Bangkok 10140, Thailand
[6] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan
[7] King Abdulaziz Univ, Coll Sci & Arts, Dept Math, POB 344, Rabigh 21911, Saudi Arabia
关键词
Tuberculosis disease model; Atangana-Baleanu derivative; Existence and uniqueness; Fractional Adams-Bashforth method; TRANSMISSION; EQUATION; DYNAMICS; PREY;
D O I
10.1016/j.aej.2021.01.015
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The current work investigates the mathematical model of Tuberculosis disease with incomplete treatment under the Atangana-Baleanu-Caputo (ABC) derivative with fractional order. Upon exploiting fixed point approach and nonlinear analysis, we derive some theoretical results about solution existence and its stability. The famous fractional Adam Bashforth technique is applied to compute numerical solution to the considered model. The aforesaid tool is based on fundamental theorem of fractional calculus and Lagrange interpolation polynomials. Additionally, various numerical plots are given corresponding to different fractional order in (0, 1]. (C) 2021 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:2845 / 2856
页数:12
相关论文
共 50 条
  • [41] New numerical simulations for some real world problems with Atangana-Baleanu fractional derivative
    Gao, Wei
    Ghanbari, Behzad
    Baskonus, Haci Mehmet
    CHAOS SOLITONS & FRACTALS, 2019, 128 : 34 - 43
  • [42] DYNAMICAL ANALYSIS OF NONAUTONOMOUS RLC CIRCUIT WITH THE ABSENCE AND PRESENCE OF ATANGANA-BALEANU FRACTIONAL DERIVATIVE
    Iqbal, Sayed Allamah
    Hafez, Md Golam
    Chu, Yu-Ming
    Park, Choonkil
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2022, 12 (02): : 770 - 789
  • [43] Modeling chickenpox disease with fractional derivatives: From caputo to atangana-baleanu
    Qureshi, Sania
    Yusuf, Abdullahi
    CHAOS SOLITONS & FRACTALS, 2019, 122 : 111 - 118
  • [44] Analysis of Atangana-Baleanu fractional-order SEAIR epidemic model with optimal control
    Deressa, Chernet Tuge
    Duressa, Gemechis File
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [45] Atangana-Baleanu Fractional Dynamics of Predictive Whooping Cough Model with Optimal Control Analysis
    Butt, Azhar Iqbal Kashif
    SYMMETRY-BASEL, 2023, 15 (09):
  • [46] Step forward on nonlinear differential equations with the Atangana-Baleanu derivative: Inequalities, existence, uniqueness and method
    Atangana, Abdon
    Araz, Seda Igret
    CHAOS SOLITONS & FRACTALS, 2023, 173
  • [47] Study of Fuzzy Fractional Third-Order Dispersive KdV Equation in a Plasma under Atangana-Baleanu Derivative
    Areshi, Mounirah
    El-Tantawy, S. A.
    Alotaibi, B. M.
    Zaland, Shamsullah
    JOURNAL OF FUNCTION SPACES, 2022, 2022
  • [48] COMPARATIVE ANALYSIS OF MATHEMATICAL MODEL OF COVID-SARS USING ATANGANA-BALEANU AND YANG-ABDEL-CATTANI FRACTIONAL DERIVATIVE OPERATORS
    Alazman, Ibtehal
    Albalawi, Kholoud
    ADVANCES AND APPLICATIONS IN STATISTICS, 2022, 81 : 23 - 52
  • [49] Analysis and Dynamics of Fractional Order Mathematical Model of COVID-19 in Nigeria Using Atangana-Baleanu Operator
    Peter, Olumuyiwa J.
    Shaikh, Amjad S.
    Ibrahim, Mohammed O.
    Nisar, Kottakkaran Sooppy
    Baleanu, Dumitru
    Khan, Ilyas
    Abioye, Adesoye I.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 66 (02): : 1823 - 1848
  • [50] New idea of Atangana-Baleanu time-fractional derivative to advection-diffusion equation
    Tlili, Iskander
    Shah, Nehad Ali
    Ullah, Saif
    Manzoor, Humera
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (03) : 2521 - 2531