Nonlinear fractional mathematical model of tuberculosis (TB) disease with incomplete treatment under Atangana-Baleanu derivative

被引:53
|
作者
Rahman, Mati Ur [1 ]
Arfan, Muhammad [2 ]
Shah, Zahir [3 ,5 ]
Kumam, Poom [4 ,5 ,6 ]
Shutaywi, Meshal [7 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Math, 800 Dongchuan Rd, Shanghai, Peoples R China
[2] Univ Malakand, Dept Math, Dir L, Khyber Pakhtunk, Pakistan
[3] Univ Lakki Marwat, Dept Math, Lakki Marwat 28420, Khyber Pakhtunk, Pakistan
[4] King Mongkuts Univ Technol Thonburi KMUTT, KMUTT Fixed Point Res Lab, KMUTT Fixed Point Theory & Applicat Res Grp, SCL 802 Fixed Point Lab,Dept Math,Fac Sci, 126 Pracha Uthit Rd, Bangkok 10140, Thailand
[5] King Mongkuts Univ Technol Thonburi KMUTT, Ctr Excellence Theoret & Computat Sci TaCS CoE, SCL 802 Fixed Point Lab, Sci Lab Bldg,126 Pracha Uthit Rd, Bangkok 10140, Thailand
[6] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan
[7] King Abdulaziz Univ, Coll Sci & Arts, Dept Math, POB 344, Rabigh 21911, Saudi Arabia
关键词
Tuberculosis disease model; Atangana-Baleanu derivative; Existence and uniqueness; Fractional Adams-Bashforth method; TRANSMISSION; EQUATION; DYNAMICS; PREY;
D O I
10.1016/j.aej.2021.01.015
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The current work investigates the mathematical model of Tuberculosis disease with incomplete treatment under the Atangana-Baleanu-Caputo (ABC) derivative with fractional order. Upon exploiting fixed point approach and nonlinear analysis, we derive some theoretical results about solution existence and its stability. The famous fractional Adam Bashforth technique is applied to compute numerical solution to the considered model. The aforesaid tool is based on fundamental theorem of fractional calculus and Lagrange interpolation polynomials. Additionally, various numerical plots are given corresponding to different fractional order in (0, 1]. (C) 2021 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:2845 / 2856
页数:12
相关论文
共 50 条
  • [21] Analysis and numerical simulation of fractional order Cahn-Allen model with Atangana-Baleanu derivative
    Prakash, Amit
    Kaur, Hardish
    CHAOS SOLITONS & FRACTALS, 2019, 124 : 134 - 142
  • [22] Modelling immune systems based on Atangana-Baleanu fractional derivative
    Al-khedhairi, A.
    Elsadany, A. A.
    Elsonbaty, A.
    CHAOS SOLITONS & FRACTALS, 2019, 129 : 25 - 39
  • [23] Modeling and analysis of an epidemic model with fractal-fractional Atangana-Baleanu derivative
    El-Dessoky, M. M.
    Khan, Muhammad Altaf
    ALEXANDRIA ENGINEERING JOURNAL, 2022, 61 (01) : 729 - 746
  • [24] Analysis of a basic SEIRA model with Atangana-Baleanu derivative
    Ucar, Sumeyra
    AIMS MATHEMATICS, 2020, 5 (02): : 1411 - 1424
  • [25] FRACTAL-FRACTIONAL SIRS EPIDEMIC MODEL WITH TEMPORARY IMMUNITY USING ATANGANA-BALEANU DERIVATIVE
    Okyere, Eric
    Seidu, Baba
    Nantomah, Kwara
    Asamoah, Joshua Kiddy K.
    COMMUNICATIONS IN MATHEMATICAL BIOLOGY AND NEUROSCIENCE, 2022,
  • [26] Mathematical modeling and analysis of the novel Coronavirus using Atangana-Baleanu derivative
    Alzahrani, Ebraheem
    El-Dessoky, M. M.
    Baleanu, Dumitru
    RESULTS IN PHYSICS, 2021, 25
  • [27] An application of the Atangana-Baleanu fractional derivative in mathematical biology: A three-species predator-prey model
    Ghanbari, Behzad
    Gunerhan, Hatira
    Srivastava, H. M.
    CHAOS SOLITONS & FRACTALS, 2020, 138
  • [28] Fractal-fractional model and numerical scheme based on Newton polynomial for Q fever disease under Atangana-Baleanu derivative
    Asamoah, Joshua Kiddy K.
    RESULTS IN PHYSICS, 2022, 34
  • [29] NUMERICAL ANALYSIS OF COUPLED FRACTIONAL DIFFERENTIAL EQUATIONS WITH ATANGANA-BALEANU FRACTIONAL DERIVATIVE
    Koca, Ilknur
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2019, 12 (03): : 475 - 486
  • [30] Discussion on the Optimal Controls Results for Fractional Systems With Atangana-Baleanu Derivative
    Johnson, M.
    Vijayakumar, V.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, : 8715 - 8723