OPTIMAL TRANSPORTATION UNDER NONHOLONOMIC CONSTRAINTS

被引:44
作者
Agrachev, Andrei [1 ,2 ]
Lee, Paul [3 ]
机构
[1] Scuola Int Super Studi Avanzati, Int Sch Adv Studies, Trieste, Italy
[2] VA Steklov Math Inst, Moscow 119991, Russia
[3] Univ Toronto, Dept Math, Toronto, ON M5S 2E4, Canada
关键词
OPTIMAL MASS TRANSPORTATION;
D O I
10.1090/S0002-9947-09-04813-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study Mongs's optimal transportation problem. where the cost, is given by an optimal control cost We prove the existence and uniqueness of all optimal map under certain regularly conditions oil the Lagrangian, absolute continuity of the measures with respect to Lebesgue, and most importantly the absence of sharp abnormal minimizers In particular, this result is applicable in the case of subriemannian manifolds with a 2-generating distribution and cost given by d(2), where d is the subriemannian distance Also, we discuss sonic properties of the optimal plan when abnormal minimizers are present Finally we consider Some examples of displacement Interpolation in the case of the Grushin plane
引用
收藏
页码:6019 / 6047
页数:29
相关论文
共 24 条
  • [1] On the subanalyticity of Carnot-Caratheodory distances
    Agrachev, A
    Gauthier, JP
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2001, 18 (03): : 359 - 382
  • [2] Agrachev A.A., 1995, J DYNAMICAL CONTROL, V1, P139
  • [3] Abnormal sub-Riemannian geodesics: Morse index and rigidity
    Agrachev, AA
    Sarychev, AV
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1996, 13 (06): : 635 - 690
  • [4] AGRACHEV AA, CONTEOL THEORY GEOME
  • [5] AGRACHEV AA, 2004, LECT NOTES
  • [6] Optimal mass transportation in the Heisenberg group
    Ambrosio, L
    Rigot, S
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2004, 208 (02) : 261 - 301
  • [7] Bernard P, 2007, J EUR MATH SOC, V9, P85
  • [9] Semiconcavity results for optimal control problems admitting no singular minimizing controls
    Cannarsa, P.
    Rifford, L.
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2008, 25 (04): : 773 - 802
  • [10] Cannarsa P., 2004, Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control