Landesman-Lazer type conditions for a system of p-Laplacian like operators

被引:10
作者
Amster, Pablo
De Napoli, Pablo
机构
[1] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat, RA-1428 Buenos Aires, DF, Argentina
[2] Consejo Nacl Invest Cient & Tecn, RA-1033 Buenos Aires, DF, Argentina
关键词
p-Laplacian systems; Landesman-Lazer conditions;
D O I
10.1016/j.jmaa.2006.04.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the existence of periodic solutions for a nonlinear second order system of ordinary differential equations of p-Laplacian type. Assuming suitable Nagumo and Landesman-Lazer type conditions we prove the existence of at least one solution applying topological degree methods. We extend a celebrated result by Nirenberg for resonant systems. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:1236 / 1243
页数:8
相关论文
共 12 条
[1]  
AMSTER P, IN PRESS NODEA NONLI
[2]   Existence result for the problem (φ(u′))′=f(t,u,u′) with periodic and Neumann boundary conditions. [J].
Cabada, A ;
Pouso, RL .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 30 (03) :1733-1742
[3]  
Franco D, 2003, DISCRETE CONT DYN-A, P273
[4]   An extension of Mawhin's continuation theorem and its application to boundary value problems with a p-Laplacain [J].
Ge, WG ;
Ren, JL .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 58 (3-4) :477-488
[5]  
LANDESMAN EM, 1970, J MATH MECH, V19, P609
[6]   Periodic solutions for nonlinear systems with p-Laplacian-like operators [J].
Manasevich, R ;
Mawhin, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1998, 145 (02) :367-393
[7]   A Hartman-Nagumo inequality for the vector ordinary p-Laplacian and applications to nonlinear boundary value problems [J].
Mawhin, J ;
Ureña, AJ .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2002, 7 (05) :701-725
[8]  
Mawhin J., 2000, B SOC ESPANOLA MATEM, V16, P45
[9]  
MAWHIN J, 1979, NSF CBMS REG C MATH, V40
[10]  
Nagumo M., 1937, Proc. Phys.Math. Soc. Japan, V19, P861, DOI 10.11429/ppmsj1919.19.0861