Synthesised fractional-order PD controller design for fractional-order time-delay systems based on improved robust stability surface analysis

被引:5
作者
Zhang, Shuo [1 ]
Liu, Lu [2 ]
Chen, Yang Quan [3 ]
Xue, Dingyu [4 ]
机构
[1] Northwestern Polytech Univ, Sch Math & Stat, Xian 710072, Peoples R China
[2] Northwestern Polytech Univ, Sch Marine Sci & Technol, Xian 710072, Peoples R China
[3] Univ Calif, Sch Engn, Mechatron Embedded Syst & Automat MESA Lab, Merced, CA USA
[4] Northeastern Univ, Dept Informat Sci & Engn, Shenyang 110819, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
robust control; PD control; delay systems; control system analysis; control system synthesis; fractional-order PD controller design; fractional-order time-delay systems; improved robust stability surface analysis; robust stability surface analysis method; guaranteed robustness specifications; improved robustness requirements; selectable robust controller design parameter combinations; controlled system; stability region; stability boundary locus; PROPORTIONAL DERIVATIVE CONTROLLER; IMPLEMENTATION; STABILIZATION; PI;
D O I
10.1049/iet-cta.2020.0383
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An improved robust stability surface analysis method is proposed in this study for fractional-order time-delay systems. Through the stabilisation process, a synthesised fractional-order PD controller can be designed with guaranteed robustness specifications. Firstly, the specification for improved robustness requirements is proposed. In order to find selectable robust controller design parameter combinations for the controlled system, stability region is discussed based on the stability boundary locus, and the robust stability surface is derived straight after. Secondly, the selectable parameter combinations are checked to find the one that best fulfils all the proposed robustness specifications. Finally, numerical simulations are given to demonstrate the effectiveness and flexibility of the presented control algorithm.
引用
收藏
页码:3723 / 3730
页数:8
相关论文
共 41 条
[1]   Principles and synthesis of hydractive CRONE suspension [J].
Altet, O ;
Moreau, X ;
Moze, M ;
Lanusse, P ;
Oustaloup, A .
NONLINEAR DYNAMICS, 2004, 38 (1-4) :435-459
[2]  
[Anonymous], 2013, J APPL NONLINEAR DYN
[3]  
[Anonymous], 2000, P IFAC WORKSH DIG CO
[4]   Simultaneous Compensation of the Gain, Phase, and Phase-Slope [J].
Badri, Vahid ;
Tavazoei, Mohammad Saleh .
JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2016, 138 (12)
[5]   Some Analytical Results on Tuning Fractional-Order [Proportional-Integral] Controllers for Fractional-Order Systems [J].
Badri, Vahid ;
Tavazoei, Mohammad Saleh .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2016, 24 (03) :1059-1066
[6]   Phase-constrained fractional order PIλ controller for second-order-plus dead time systems [J].
Chen, Kai ;
Tang, Rongnian ;
Li, Chuang .
TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2017, 39 (08) :1225-1235
[7]   Relay feedback tuning of robust PID controllers with iso-damping property [J].
Chen, YQ ;
Moore, KL .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2005, 35 (01) :23-31
[8]   Fractional robust control of main irrigation canals with variable dynamic parameters [J].
Feliu-Batlle, V. ;
Rivas Perez, R. ;
Sanchez Rodriguez, L. .
CONTROL ENGINEERING PRACTICE, 2007, 15 (06) :673-686
[9]   On the robust control of stable minimum phase plants with large uncertainty in a time constant. A fractional-order control approach [J].
Feliu-Batlle, Vicente ;
Castillo-Garcia, Fernando J. .
AUTOMATICA, 2014, 50 (01) :218-224
[10]   Discrete-Time Implementation and Experimental Validation of a Fractional Order PD Controller for Vibration Suppression in Airplane Wings [J].
Folea, Silviu ;
De Keyser, Robin ;
Birs, Isabela R. ;
Muresan, Cristina I. ;
Ionescu, Clara .
ACTA POLYTECHNICA HUNGARICA, 2017, 14 (01) :191-206