Methylation and protein expression of DNA repair genes: association with chemotherapy exposure and survival in sporadic ovarian and peritoneal carcinomas

被引:87
作者
Swisher, Elizabeth M. [1 ,2 ]
Gonzalez, Rachel M. [2 ]
Taniguchi, Toshiyasu [3 ,4 ]
Garcia, Rochelle L. [5 ]
Walsh, Tom [2 ]
Goff, Barbara A. [1 ]
Welcsh, Piri [2 ]
机构
[1] Univ Washington, Sch Med, Div Gynecol Oncol, Dept Obstet & Gynecol, Seattle, WA 98195 USA
[2] Univ Washington, Sch Med, Div Med Genet, Dept Med, Seattle, WA 98195 USA
[3] Fred Hutchinson Canc Res Ctr, Div Human Biol, Seattle, WA 98109 USA
[4] Fred Hutchinson Canc Res Ctr, Div Publ Hlth Sci, Seattle, WA 98109 USA
[5] Univ Washington, Sch Med, Dept Pathol, Seattle, WA 98195 USA
关键词
BRCA1 PROMOTER REGION; BREAST-CANCER CELLS; FANCONI-ANEMIA; HMLH1; EXPRESSION; TP53; MUTATIONS; RESISTANCE; HYPERMETHYLATION; LOCALIZATION; CISPLATIN; TUMORS;
D O I
10.1186/1476-4598-8-48
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Background: DNA repair genes critically regulate the cellular response to chemotherapy and epigenetic regulation of these genes may be influenced by chemotherapy exposure. Restoration of BRCA1 and BRCA2 mediates resistance to platinum chemotherapy in recurrent BRCA1 and BRCA2 mutated hereditary ovarian carcinomas. We evaluated BRCA1, BRCA2, and MLH1 protein expression in 115 sporadic primary ovarian carcinomas, of which 31 had paired recurrent neoplasms collected after chemotherapy. Additionally, we assessed whether promoter methylation of BRCA1, MLH1 or FANCF influenced response to chemotherapy or explained alterations in protein expression after chemotherapy exposure. Results: Of 115 primary sporadic ovarian carcinomas, 39 (34%) had low BRCA1 protein and 49 (42%) had low BRCA2 expression. BRCA1 and BRCA2 protein expression were highly concordant (p < 0.0001). MLH1 protein loss occurred in 28/115 (24%) primary neoplasms. BRCA1 protein loss in primary neoplasms was associated with better survival (p = 0.02 Log Rank test) and remained significant after accounting for either stage or age in a multivariate model (p = 0.04, Cox proportional hazards). In paired specimens, BRCA1 protein expression increased in 13/21 (62%) and BRCA2 protein expression increased in 15/21 (71%) of recurrent carcinomas with low or intermediate protein in the paired primary. In contrast MLH1 expression was rarely decreased in recurrent carcinomas (1/33, 3%). Similar frequencies of MLH1, BRCA1, and FANCF promoter methylation occurred in primary carcinomas without previous chemotherapy, after neoadjuvant chemotherapy, or in recurrent neoplasms. Conclusion: Low BRCA1 expression in primary sporadic ovarian carcinoma is associated with prolonged survival. Recurrent ovarian carcinomas commonly have increased BRCA1 and/or BRCA2 protein expression post chemotherapy exposure which could mediate resistance to platinum based therapies. However, alterations in expression of these proteins after chemotherapy are not commonly mediated by promoter methylation, and other regulatory mechanisms are likely to contribute to these alterations.
引用
收藏
页数:11
相关论文
共 54 条
[41]   Primary ovarian carcinomas display multiple methylator phenotypes involving known tumor suppressor genes [J].
Strathdee, G ;
Appleton, K ;
Illand, M ;
Millan, DWM ;
Sargent, J ;
Paul, J ;
Brown, R .
AMERICAN JOURNAL OF PATHOLOGY, 2001, 158 (03) :1121-1127
[42]   Secondary BRCA1 mutations in BRCA1-mutated ovarian carcinomas with platinum resistance [J].
Swisher, Elizabeth M. ;
Sakai, Wataru ;
Karlan, Beth Y. ;
Wurz, Kaitlyn ;
Urban, Nicole ;
Taniguchi, Toshiyasu .
CANCER RESEARCH, 2008, 68 (08) :2581-2586
[43]  
Takahashi H, 1996, CANCER RES, V56, P2738
[44]  
TAKAHASHI H, 1995, CANCER RES, V55, P2998
[45]   Disruption of the Fanconi anemia-BRCA pathway in cisplatin-sensitive ovarian tumors [J].
Taniguchi, T ;
Tischkowitz, M ;
Ameziane, N ;
Hodgson, SV ;
Mathew, CG ;
Joenje, H ;
Mok, SC ;
D'Andrea, AD .
NATURE MEDICINE, 2003, 9 (05) :568-574
[46]   CpG island methylation of DNA damage response genes in advanced ovarian cancer [J].
Teodoridis, JM ;
Hall, J ;
Marsh, S ;
Kannall, HD ;
Smyth, C ;
Curto, J ;
Siddiqui, N ;
Gabra, H ;
McLeod, HL ;
Strathdee, G ;
Brown, R .
CANCER RESEARCH, 2005, 65 (19) :8961-8967
[47]   Localization of BRCA1 and a splice variant identifies the nuclear localization signal [J].
Thakur, S ;
Zhang, HB ;
Peng, Y ;
Le, H ;
Carroll, B ;
Ward, T ;
Yao, J ;
Farid, LM ;
Couch, FJ ;
Wilson, RB ;
Weber, BL .
MOLECULAR AND CELLULAR BIOLOGY, 1997, 17 (01) :444-452
[48]   BURCA1 expression in a large series of sporadic ovarian carcinomas: a Gynecologic Oncology Group study [J].
Thrall, M ;
Gallion, HH ;
Kryscio, R ;
Kapali, M ;
Armstrong, DK ;
DeLoia, JA .
INTERNATIONAL JOURNAL OF GYNECOLOGICAL CANCER, 2006, 16 :166-171
[49]   Expression of BRCA I protein in benign, borderline, and malignant epithelial ovarian neoplasms and its relationship to methylation and allelic loss of the BRCA I gene [J].
Wang, C ;
Horiuchi, A ;
Imai, T ;
Ohira, S ;
Itoh, K ;
Nikaido, T ;
Katsuyama, Y ;
Konishi, I .
JOURNAL OF PATHOLOGY, 2004, 202 (02) :215-223
[50]   Emergence of a DNA-damage response network consisting of Fanconi anaemia and BRCA proteins [J].
Wang, Weidong .
NATURE REVIEWS GENETICS, 2007, 8 (10) :735-748