Faltings' Finiteness Dimension of Local Cohomology Modules Over Local Cohen-Macaulay Rings

被引:1
|
作者
Bahmanpour, Kamal [1 ,2 ]
Naghipour, Reza [2 ,3 ]
机构
[1] Univ Mohaghegh Ardabili, Dept Math, Fac Sci, Ardebil 5619911367, Iran
[2] Inst Res Fundamental Sci IPM, Sch Math, Tehran 193955746, Iran
[3] Univ Tabriz, Dept Math, Tabriz, Iran
来源
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES | 2017年 / 60卷 / 02期
关键词
Cohen Macaulay ring; equidimensional ring; finiteness dimension; local cohomology; COFINITENESS;
D O I
10.4153/CMB-2016-092-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (R, m) denote a local Cohen-Macaulay ring and I a non-nilpotent ideal of R. The purpose of this article is to investigate Faltings' finiteness dimension f(I)(R) and the equidimensionalness of certain homomorphic images of R. As a consequence we deduce that f(I)(R) = max{1, ht I}, and if mAss(R) (R/I) is contained in AssR (R), then the ring R/I + U-n >= 1(0 :(R) I-n) is equidimensional of dimension dim R-1. Moreover, we will obtain a lower bound for injective dimension of the local cohomology module H-I(ht) (I)(R), in the case where (R, m) is a complete equidimensional local ring.
引用
收藏
页码:225 / 234
页数:10
相关论文
共 50 条
  • [41] Approximately Cohen-Macaulay modules
    Yazdani, Saeed
    Azami, Jafar
    Sadegh, Yasin
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2022, 51 (04): : 1072 - 1084
  • [42] COHEN-MACAULAY LOCI OF MODULES
    Dibaei, Mohammad T.
    Jafari, Raheleh
    COMMUNICATIONS IN ALGEBRA, 2011, 39 (10) : 3681 - 3697
  • [43] On Cohen-Macaulay rings of invariants
    Lorenz, M
    Pathak, J
    JOURNAL OF ALGEBRA, 2001, 245 (01) : 247 - 264
  • [44] Generalized Cohen-Macaulay dimension
    Asadollahi, J
    Salarian, S
    JOURNAL OF ALGEBRA, 2004, 273 (01) : 384 - 394
  • [45] Property of Almost Cohen-Macaulay over Extension Modules
    Tabejamaat, Samaneh
    Mafi, Amir
    Amoli, Khadijeh Ahmadi
    ALGEBRA COLLOQUIUM, 2017, 24 (03) : 509 - 518
  • [46] ON THE FINITENESS OF FORMAL LOCAL COHOMOLOGY MODULES
    Rezaei, Sh
    Ghasemi-kalemasihi, M.
    JOURNAL OF ALGEBRAIC SYSTEMS, 2023, 11 (01):
  • [47] Some characterizations of relative sequentially Cohen-Macaulay and relative Cohen-Macaulay modules
    Zargar, Majid Rahro
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2025, 24 (06)
  • [48] Graded local cohomology of modules over semigroup rings
    Matusevich, Laura Felicia
    Yu, Byeongsu
    JOURNAL OF ALGEBRA, 2024, 641 : 147 - 172
  • [49] BIG RELATIVE COHEN-MACAULAY MODULES
    Khanjari, Mehrzad
    Bahmanpour, Kamal
    Ghasemi, Ghader
    COLLOQUIUM MATHEMATICUM, 2020, 160 (01) : 133 - 139
  • [50] On the notion of sequentially Cohen-Macaulay modules
    Caviglia, Giulio
    De Stefani, Alessandro
    Sbarra, Enrico
    Strazzanti, Francesco
    RESEARCH IN THE MATHEMATICAL SCIENCES, 2022, 9 (03)