Faltings' Finiteness Dimension of Local Cohomology Modules Over Local Cohen-Macaulay Rings

被引:1
|
作者
Bahmanpour, Kamal [1 ,2 ]
Naghipour, Reza [2 ,3 ]
机构
[1] Univ Mohaghegh Ardabili, Dept Math, Fac Sci, Ardebil 5619911367, Iran
[2] Inst Res Fundamental Sci IPM, Sch Math, Tehran 193955746, Iran
[3] Univ Tabriz, Dept Math, Tabriz, Iran
来源
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES | 2017年 / 60卷 / 02期
关键词
Cohen Macaulay ring; equidimensional ring; finiteness dimension; local cohomology; COFINITENESS;
D O I
10.4153/CMB-2016-092-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (R, m) denote a local Cohen-Macaulay ring and I a non-nilpotent ideal of R. The purpose of this article is to investigate Faltings' finiteness dimension f(I)(R) and the equidimensionalness of certain homomorphic images of R. As a consequence we deduce that f(I)(R) = max{1, ht I}, and if mAss(R) (R/I) is contained in AssR (R), then the ring R/I + U-n >= 1(0 :(R) I-n) is equidimensional of dimension dim R-1. Moreover, we will obtain a lower bound for injective dimension of the local cohomology module H-I(ht) (I)(R), in the case where (R, m) is a complete equidimensional local ring.
引用
收藏
页码:225 / 234
页数:10
相关论文
共 50 条