Periodic solution to nonlinear oscillators without artificial noises by the homotopy perturbation method

被引:2
作者
Wu, Yue [1 ]
机构
[1] Shanghai Univ Polit Sci & Law, Coll Econ & Management, Shanghai, Peoples R China
关键词
Nonlinear oscillator; periodic solution; chaotic solution; noise; VARIATIONAL ITERATION METHOD; STABILITY ANALYSIS; FORMULATION; PRINCIPLE; EQUATIONS;
D O I
10.1177/1461348418800902
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
This paper elucidates a wrong trend in solving nonlinear oscillators. The homotopy perturbation method leads to a period solution to a nonlinear oscillator with high nonlinearity, while the Parker-Sochacki method results in a chaotic one and it is invalid for solving nonlinear oscillators.
引用
收藏
页码:1433 / 1438
页数:6
相关论文
共 32 条
  • [1] Modified Parker-Sochacki method for solving nonlinear oscillators
    Abdelrazik, Ismail M.
    Elkaranshawy, Hesham A.
    Abdelrazek, Amr M.
    [J]. MECHANICS BASED DESIGN OF STRUCTURES AND MACHINES, 2017, 45 (02) : 239 - 252
  • [2] Adamu MY., 2017, Nonlinear Sci Lett A, V8, P240
  • [3] Ahmad H., 2018, NONLINEAR SCI LETT A, V9, P27
  • [4] [Anonymous], 2018, NONLINEAR SCI LETT A
  • [5] [Anonymous], 2017, NONLIN SCI LETT A
  • [6] [Anonymous], 2018, Nonlinear Sci Lett A
  • [7] [Anonymous], 2017, NONLIN SCI LETT A
  • [8] El-Dib YO., 2017, Nonlinear Sci Lett A, V8, P352
  • [9] Guo Y., 2017, UKR MATH J, V69, P1220
  • [10] Exponential stability analysis of travelling waves solutions for nonlinear delayed cellular neural networks
    Guo, Yingxin
    [J]. DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2017, 32 (04): : 490 - 503