Synthesis of localized 2D-layers of silicon nanoparticles embedded in a SiO2 layer by a stencil-masked ultra-low energy ion implantation process

被引:25
作者
Dumas, C.
Grisolia, J.
Ressier, L.
Arbouet, A.
Paillard, V.
Ben Assayag, G.
Claverie, A.
van den Boogaart, M. A. F.
Brugger, J.
机构
[1] Inst Natl Sci Appl, LNMO, Dept Phys, F-31077 Toulouse, France
[2] Univ Toulouse 3, LPST, F-31062 Toulouse, France
[3] CEMES, CNRS, Nanomat Grp, F-31055 Toulouse, France
[4] Ecole Polytech Fed Lausanne, Microsyst Lab, CH-1015 Lausanne, Switzerland
来源
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE | 2007年 / 204卷 / 02期
关键词
D O I
10.1002/pssa.200673232
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We propose an original approach called "stencil-masked ion implantation process" to perform a spatially localized synthesis of a limited number of Si nanoparticles (nps) within a thin SiO2 layer. This process consists in implanting silicon ions at ultra-low energy through a stencil mask containing a periodic array of opened windows (from 50 nm to 2 mu m). After the stencil removal, a thermal annealing is used to synthesize small and spherical embedded nps. AFM observations show that the stencil windows are perfectly transferred into the substrate without any clogging or bluffing effect. The samples exhibit a 3 urn localized swelling of the regions rich in Si nps. Moreover, photoluminescence (PL) spectroscopy shows that due to the quantum confinement only the implanted regions containing the Si nps are emitting light. (c) 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
引用
收藏
页码:487 / 491
页数:5
相关论文
共 9 条
[1]   Si nanocrystals by ultra-low-energy ion beam-synthesis for non-volatile memory applications [J].
Bonafos, C ;
Coffin, H ;
Schamm, S ;
Cherkashin, N ;
Ben Assayag, G ;
Dimitrakis, P ;
Normand, P ;
Carrada, M ;
Paillard, V ;
Claverie, A .
SOLID-STATE ELECTRONICS, 2005, 49 (11) :1734-1744
[2]   Manipulation of two-dimensional arrays of Si nanocrystals embedded in thin SiO2 layers by low energy ion implantation [J].
Bonafos, C ;
Carrada, M ;
Cherkashin, N ;
Coffin, H ;
Chassaing, D ;
Assayag, GB ;
Claverie, A ;
Müller, T ;
Heinig, KH ;
Perego, M ;
Fanciulli, M ;
Dimitrakis, P ;
Normand, P .
JOURNAL OF APPLIED PHYSICS, 2004, 95 (10) :5696-5702
[3]   Photoluminescence of Si nanocrystal memory devices obtained by ion beam synthesis [J].
Carrada, M ;
Wellner, A ;
Paillard, V ;
Bonafos, C ;
Coffin, H ;
Claverie, A .
APPLIED PHYSICS LETTERS, 2005, 87 (25) :1-3
[4]   Room-temperature single-electron charging phenomena in large-area nanocrystal memory obtained by low-energy ion beam synthesis [J].
Kapetanakis, E ;
Normand, P ;
Tsoukalas, D ;
Beltsios, K .
APPLIED PHYSICS LETTERS, 2002, 80 (15) :2794-2796
[5]   Fabrication and application of a full wafer size micro/nanostencil for multiple length-scale surface patterning [J].
Kim, GM ;
van den Boogaart, MAF ;
Brugger, J .
MICROELECTRONIC ENGINEERING, 2003, 67-8 :609-614
[6]   Lithographyless ion implantation technology for agile fab [J].
Nishihashi, T ;
Kashimoto, K ;
Fujiyama, J ;
Sakurada, Y ;
Shibata, T ;
Suguro, K ;
Sugihara, K ;
Okumura, K ;
Gotou, T ;
Saji, N ;
Tsunoda, M .
IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, 2002, 15 (04) :464-469
[7]   Silicon stencil masks for masked ion beam lithography proximity printing [J].
Rangelow, IW ;
Shi, F ;
Hudek, P ;
Kostic, I ;
Hammel, E ;
Loschner, H ;
Stengl, G ;
Cekan, E .
MICROELECTRONIC ENGINEERING, 1996, 30 (1-4) :257-260
[8]  
Tiwari S, 1996, APPL PHYS LETT, V68, P1377, DOI 10.1063/1.116085
[9]   Deep-ultraviolet-microelectromechanicaI systems stencils for high-throughput resistless. patterning of mesoscopic structures [J].
van den Boogaart, MAF ;
Kim, GM ;
Pellens, R ;
van den Heuvel, JP ;
Brugger, J .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2004, 22 (06) :3174-3177