Towards high energy density lithium battery anodes: silicon and lithium

被引:177
作者
Zhu, Bin [1 ]
Wang, Xinyu [1 ]
Yao, Pengcheng [1 ]
Li, Jinlei [1 ]
Zhu, Jia [1 ]
机构
[1] Nanjing Univ, Coll Engn & Appl Sci, Natl Lab Solid State Microstruct, Jiangsu Key Lab Artificial Funct Mat, Nanjing 210093, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
SOLID-ELECTROLYTE INTERPHASE; SIZE-DEPENDENT FRACTURE; LOW-GRADE SOURCES; LI-ION BATTERIES; METAL ANODE; HIGH-CAPACITY; FLUOROETHYLENE CARBONATE; SCALABLE PRODUCTION; INTERFACIAL LAYER; RECENT PROGRESS;
D O I
10.1039/c9sc01201j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Silicon and lithium metal are considered as promising alternatives to state-of-the-art graphite anodes for higher energy density lithium batteries because of their high theoretical capacity. However, significant challenges such as short cycle life and low coulombic efficiency have seriously hindered their practical applications. In the past decades, various strategies have been proposed to address the major problems of Si and Li anodes. In this review, we summarize the understanding on Si and Li anodes, highlight the recent progress in the development and introduce advanced characterization techniques. We also indicate the remaining challenges of Si and Li anodes requiring more efforts for future widespread applications. We expect that this review provides an overall picture of the recent progress and inspires more efforts in the fundamental understanding and practical applications of Si and Li anodes.
引用
收藏
页码:7132 / 7148
页数:17
相关论文
共 127 条
[1]   Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries [J].
Albertus, Paul ;
Babinec, Susan ;
Litzelman, Scott ;
Newman, Aron .
NATURE ENERGY, 2018, 3 (01) :16-21
[2]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[3]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[4]   Silicon as a potential anode material for Li-ion batteries: where size, geometry and structure matter [J].
Ashuri, Maziar ;
He, Qianran ;
Shaw, Leon L. .
NANOSCALE, 2016, 8 (01) :74-103
[5]   A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions [J].
Aurbach, D ;
Zinigrad, E ;
Cohen, Y ;
Teller, H .
SOLID STATE IONICS, 2002, 148 (3-4) :405-416
[6]   High-Power Li-Metal Anode Enabled by Metal-Organic Framework Modified Electrolyte [J].
Bai, Songyan ;
Sun, Yang ;
Yi, Jin ;
He, Yibo ;
Qiao, Yu ;
Zhou, Haoshen .
JOULE, 2018, 2 (10) :2117-2132
[7]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
[8]   Ambient-Air Stable Lithiated Anode for Rechargeable Li-Ion Batteries with High Energy Density [J].
Cao, Zeyuan ;
Xu, Pengyu ;
Zhai, Haowei ;
Du, Sicen ;
Mandal, Jyotirmoy ;
Dontigny, Martin ;
Zaghib, Karim ;
Yang, Yuan .
NANO LETTERS, 2016, 16 (11) :7235-7240
[9]   Silicon-based anodes for lithium-ion batteries: Effectiveness of materials synthesis and electrode preparation [J].
Casimir, Anix ;
Zhang, Hanguang ;
Ogoke, Ogechi ;
Amine, Joseph C. ;
Lu, Jun ;
Wu, Gang .
NANO ENERGY, 2016, 27 :359-376
[10]   2D MoS2 as an efficient protective layer for lithium metal anodes in high-performance Li-S batteries [J].
Cha, Eunho ;
Patel, Mumukshu D. ;
Park, Juhong ;
Hwang, Jeongwoon ;
Prasad, Vish ;
Cho, Kyeongjae ;
Choi, Wonbong .
NATURE NANOTECHNOLOGY, 2018, 13 (04) :337-+