Spatial asymptotic expansions in the incompressible Euler equation

被引:11
作者
McOwen, Robert [1 ]
Topalov, Petar [1 ]
机构
[1] Northeastern Univ, Dept Math, 360 Huntington Ave, Boston, MA 02115 USA
关键词
KORTEWEG-DEVRIES EQUATION; SHALLOW-WATER EQUATION; RIEMANNIAN EXPONENTIAL MAPS; DIFFEOMORPHISMS; EXISTENCE; FLUID; WAVES; FLOWS; SPACE;
D O I
10.1007/s00039-017-0410-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove that the Euler equation describing the motion of an ideal fluid in is well-posed in a class of functions allowing spatial asymptotic expansions as of any a priori given order. These asymptotic expansions can involve log terms and lead to a family of conservation laws. Typically, the solutions of the Euler equation with rapidly decaying initial data develop non-trivial spatial asymptotic expansions of the type considered here.
引用
收藏
页码:637 / 675
页数:39
相关论文
共 33 条
[2]  
Bardos C, 2007, RUSS MATH SURV+, V62, P409, DOI [10.1070/RM2007v062n03ABEH004410, 10.4213/rm6811]
[3]  
Bondareva I., 1990, Journal of Soviet mathematics, V51, P2323
[4]  
BONDAREVA IN, 1985, VESTN MOSK U MAT M+, P35
[5]  
BONDAREVA IN, 1982, DOKL AKAD NAUK SSSR+, V267, P1035
[6]  
BOURGUIGNON J. P., 1931, J. Funct. Anal., V15, P341, DOI [10.1016/0022-1236(74)90027-5, DOI 10.1016/0022-1236(74)90027-5]
[7]   Space-time decay of Navier-Stokes flows invariant under rotations [J].
Brandolese, L .
MATHEMATISCHE ANNALEN, 2004, 329 (04) :685-706
[8]   On the instantaneous spreading for the Navier-Stokes system in the whole space [J].
Brandolese, L ;
Meyer, Y .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2002, 8 :273-285
[9]   AN INTEGRABLE SHALLOW-WATER EQUATION WITH PEAKED SOLITONS [J].
CAMASSA, R ;
HOLM, DD .
PHYSICAL REVIEW LETTERS, 1993, 71 (11) :1661-1664
[10]   PERFECT FLUID FLOWS OVER RN WITH ASYMPTOTIC CONDITIONS [J].
CANTOR, M .
JOURNAL OF FUNCTIONAL ANALYSIS, 1975, 18 (01) :73-84