Design and characterization of calcium phosphate ceramic scaffolds for bone tissue engineering

被引:192
|
作者
Denry, Isabelle [1 ]
Kuhn, Liisa T. [2 ]
机构
[1] Univ Iowa, Dept Prosthodont, Coll Dent, 801 Newton Rd, Iowa City, IA 52242 USA
[2] UConn Hlth, Dept Reconstruct Sci, 263 Farmington Ave,MC 1615, Farmington, CT 06030 USA
基金
美国国家卫生研究院;
关键词
Calcium phosphate ceramic; Scaffold; Hydroxyapatite; Bioactive glass; Bone tissue engineering; BETA-TRICALCIUM PHOSPHATE; MESENCHYMAL STEM-CELLS; IN-VIVO; SUBSTITUTED HYDROXYAPATITES; BIOACTIVE GLASS; POROUS HYDROXYAPATITE; SILICON SUBSTITUTION; STRONTIUM RANELATE; BIOMATERIALS; REGENERATION;
D O I
10.1016/j.dental.2015.09.008
中图分类号
R78 [口腔科学];
学科分类号
1003 ;
摘要
Objectives. Our goal is to review design strategies for the fabrication of calcium phosphate ceramic scaffolds (CPS), in light of their transient role in bone tissue engineering and associated requirements for effective bone regeneration. Methods. We examine the various design options available to meet mechanical and biological requirements of CPS and later focus on the importance of proper characterization of CPS in terms of architecture, mechanical properties and time-sensitive properties such as biodegradability. Finally, relationships between in vitro versus in vivo testing are addressed, with an attempt to highlight reliable performance predictors. Results. A combinatory design strategy should be used with CPS, taking into consideration 3D architecture, adequate surface chemistry and topography, all of which are needed to promote bone formation. CPS represent the media of choice for delivery of osteogenic factors and anti-infectives. Non-osteoblast mediated mineral deposition can confound in vitro osteogenesis testing of CPS and therefore the expression of a variety of proteins or genes including collagen type I, bone sialoprotein and osteocalcin should be confirmed in addition to increased mineral content. Conclusions. CPS are a superior scaffold material for bone regeneration because they actively promote osteogenesis. Biodegradability of CPS via calcium and phosphate release represents a unique asset. Structural control of CPS at the macro, micro and nanoscale and their combination with cells and polymeric materials is likely to lead to significant developments in bone tissue engineering. (C) 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:43 / 53
页数:11
相关论文
共 50 条
  • [31] Preparation and characterization of glass-ceramic reinforced alginate scaffolds for bone tissue engineering
    Thomas, Ashley
    Johnson, Eldin
    Agrawal, Ashish K.
    Bera, Japes
    JOURNAL OF MATERIALS RESEARCH, 2019, 34 (22) : 3798 - 3809
  • [32] Preparation and characterization of gelatin-bioactive glass ceramic scaffolds for bone tissue engineering
    Thomas, Ashley
    Bera, Japes
    JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 2019, 30 (07) : 561 - 579
  • [33] Biphasic calcium phosphate macroporous scaffolds derived from oyster shells for bone tissue engineering
    Yang, Yun
    Yao, Qingqing
    Pu, Ximing
    Hou, Zhenqing
    Zhang, Qiqing
    CHEMICAL ENGINEERING JOURNAL, 2011, 173 (03) : 837 - 845
  • [34] Polycaprolactone scaffolds for bone tissue engineering - Effects of a calcium phosphate coating layer on osteogenic cells
    Choong, C
    Triffitt, JT
    Cui, ZF
    FOOD AND BIOPRODUCTS PROCESSING, 2004, 82 (C2) : 117 - 125
  • [35] A Preliminary Study on A Highly Porous Nano Calcium Phosphate Bioceramic Scaffolds for Bone Tissue Engineering
    Feng, Yu
    Li, Wei
    Yan, Zhiling
    Liao, Yunmao
    INEC: 2010 3RD INTERNATIONAL NANOELECTRONICS CONFERENCE, VOLS 1 AND 2, 2010, : 801 - 802
  • [36] Biphasic calcium phosphate nanocomposite porous scaffolds for load-bearing bone tissue engineering
    Ramay, HRR
    Zhang, M
    BIOMATERIALS, 2004, 25 (21) : 5171 - 5180
  • [37] Bone Tissue Engineering by Using Calcium Phosphate Glass Scaffolds and the Avidin–Biotin Binding System
    Min-Chul Kim
    Min-Ho Hong
    Byung-Hyun Lee
    Heon-Jin Choi
    Yeong-Mu Ko
    Yong-Keun Lee
    Annals of Biomedical Engineering, 2015, 43 : 3004 - 3014
  • [38] Different Calcium Phosphate Granules for 3-D Printing of Bone Tissue Engineering Scaffolds
    Seitz, Hermann
    Deisinger, Ulrike
    Leukers, Barbara
    Detsch, Rainer
    Ziegler, Guenter
    ADVANCED ENGINEERING MATERIALS, 2009, 11 (05) : B41 - B46
  • [39] Fabrication of gelatin–strontium substituted calcium phosphate scaffolds with unidirectional pores for bone tissue engineering
    Yu-Chun Wu
    Wei-Yu Lin
    Chyun-Yu Yang
    Tzer-Min Lee
    Journal of Materials Science: Materials in Medicine, 2015, 26
  • [40] Design and Manufacture of Combinatorial Calcium Phosphate Bone Scaffolds
    Hoelzle, David J.
    Svientek, Shelby R.
    Alleyne, Andrew G.
    Johnson, Amy J. Wagoner
    JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 2011, 133 (10):