Design and characterization of calcium phosphate ceramic scaffolds for bone tissue engineering

被引:192
|
作者
Denry, Isabelle [1 ]
Kuhn, Liisa T. [2 ]
机构
[1] Univ Iowa, Dept Prosthodont, Coll Dent, 801 Newton Rd, Iowa City, IA 52242 USA
[2] UConn Hlth, Dept Reconstruct Sci, 263 Farmington Ave,MC 1615, Farmington, CT 06030 USA
基金
美国国家卫生研究院;
关键词
Calcium phosphate ceramic; Scaffold; Hydroxyapatite; Bioactive glass; Bone tissue engineering; BETA-TRICALCIUM PHOSPHATE; MESENCHYMAL STEM-CELLS; IN-VIVO; SUBSTITUTED HYDROXYAPATITES; BIOACTIVE GLASS; POROUS HYDROXYAPATITE; SILICON SUBSTITUTION; STRONTIUM RANELATE; BIOMATERIALS; REGENERATION;
D O I
10.1016/j.dental.2015.09.008
中图分类号
R78 [口腔科学];
学科分类号
1003 ;
摘要
Objectives. Our goal is to review design strategies for the fabrication of calcium phosphate ceramic scaffolds (CPS), in light of their transient role in bone tissue engineering and associated requirements for effective bone regeneration. Methods. We examine the various design options available to meet mechanical and biological requirements of CPS and later focus on the importance of proper characterization of CPS in terms of architecture, mechanical properties and time-sensitive properties such as biodegradability. Finally, relationships between in vitro versus in vivo testing are addressed, with an attempt to highlight reliable performance predictors. Results. A combinatory design strategy should be used with CPS, taking into consideration 3D architecture, adequate surface chemistry and topography, all of which are needed to promote bone formation. CPS represent the media of choice for delivery of osteogenic factors and anti-infectives. Non-osteoblast mediated mineral deposition can confound in vitro osteogenesis testing of CPS and therefore the expression of a variety of proteins or genes including collagen type I, bone sialoprotein and osteocalcin should be confirmed in addition to increased mineral content. Conclusions. CPS are a superior scaffold material for bone regeneration because they actively promote osteogenesis. Biodegradability of CPS via calcium and phosphate release represents a unique asset. Structural control of CPS at the macro, micro and nanoscale and their combination with cells and polymeric materials is likely to lead to significant developments in bone tissue engineering. (C) 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:43 / 53
页数:11
相关论文
共 50 条
  • [1] Porous Calcium Phosphate Ceramic Scaffolds for Tissue Engineering
    L Di Silvio
    N Gurav
    J Merry
    R Sambrook
    JournalofWuhanUniversityofTechnology-MaterialsScience, 2005, (S1) : 13 - 15
  • [2] Preparation and characterization of calcium phosphate/pectin scaffolds for bone tissue engineering
    Zhao, Lisheng
    Li, Junjie
    Zhang, Liang
    Wang, Yu
    Wang, Jiexin
    Gu, Bin
    Chen, Jianfeng
    Hao, Tong
    Wang, Changyong
    Wen, Ning
    RSC ADVANCES, 2016, 6 (67): : 62071 - 62082
  • [3] Composite calcium phosphate scaffolds for bone tissue engineering
    Popp, J. R.
    Love, B. J.
    Laflin, K. E.
    Goldstein, A. S.
    TISSUE ENGINEERING PART A, 2008, 14 (05) : 829 - 830
  • [4] Biopolymer/Calcium Phosphate Scaffolds for Bone Tissue Engineering
    Li, Jianhua
    Baker, Bryan A.
    Mou, Xiaoning
    Ren, Na
    Qiu, Jichuan
    Boughton, Robert I.
    Liu, Hong
    ADVANCED HEALTHCARE MATERIALS, 2014, 3 (04) : 469 - 484
  • [5] Preparation and characterization of four different compositions of calcium phosphate scaffolds for bone tissue engineering
    Wu, Shih-Ching
    Hsu, Hsueh-Chuan
    Hsu, Shih-Kuang
    Wang, Wei-Hsin
    Ho, Wen-Fu
    MATERIALS CHARACTERIZATION, 2011, 62 (05) : 526 - 534
  • [6] Calcium phosphate-chitosan composite scaffolds for bone tissue engineering
    Zhang, Y
    Ni, M
    Zhang, MQ
    Ratner, B
    TISSUE ENGINEERING, 2003, 9 (02): : 337 - 345
  • [7] Three dimensional macroporous calcium phosphate scaffolds for bone tissue engineering
    Teixeira, S.
    Oliveira, S.
    Ferraz, M. P.
    Monteiro, F. J.
    BIOCERAMICS, VOL 20, PTS 1 AND 2, 2008, 361-363 : 947 - +
  • [8] Biocompatibility and osteogenesis of calcium phosphate cement scaffolds for bone tissue engineering
    Guo, Han
    Wei, Jie
    Kong, Hang
    Liu, Changsheng
    Pan, Kefeng
    MULTI-FUNCTIONAL MATERIALS AND STRUCTURES, PTS 1 AND 2, 2008, 47-50 : 1383 - +
  • [9] Calcium silicate ceramic scaffolds toughened with hydroxyapatite whiskers for bone tissue engineering
    Feng, Pei
    Wei, Pingpin
    Li, Pengjian
    Gao, Chengde
    Shuai, Cijun
    Peng, Shuping
    MATERIALS CHARACTERIZATION, 2014, 97 : 47 - 56
  • [10] Synthesis and characterization of collagen/calcium phosphate scaffolds incorporating antibacterial agent for bone tissue engineering application
    Najafloo, Raziyeh
    Baheiraei, Nafiseh
    Imani, Rana
    JOURNAL OF BIOACTIVE AND COMPATIBLE POLYMERS, 2021, 36 (01) : 29 - 43