Improved large-scale prediction of growth inhibition patterns using the NCI60 cancer cell line panel

被引:80
作者
Cortes-Ciriano, Isidro [1 ,2 ]
van Westen, Gerard J. P. [3 ]
Bouvier, Guillaume [1 ,2 ]
Nilges, Michael [1 ,2 ]
Overington, John P. [4 ]
Bender, Andreas [5 ]
Malliavin, Therese E. [1 ,2 ]
机构
[1] Inst Pasteur, Unite Bioinformat Struct, F-75724 Paris, France
[2] CNRS UMR 3825, Struct Biol & Chem Dept, F-75724 Paris, France
[3] Leiden Acad Ctr Drug Res, Med Chem, NL-2333 CC Leiden, Netherlands
[4] European Bioinformat Inst, European Mol Biol Lab, Cambridge CB10 1SD, England
[5] Univ Cambridge, Dept Chem, Ctr Mol Sci Informat, Cambridge CB2 1EW, England
基金
英国惠康基金;
关键词
DRUG-SENSITIVITY PREDICTION; GENE-EXPRESSION; CHEMOGENOMICS; IDENTIFICATION; APPLICABILITY; MODEL;
D O I
10.1093/bioinformatics/btv529
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Recent large-scale omics initiatives have catalogued the somatic alterations of cancer cell line panels along with their pharmacological response to hundreds of compounds. In this study, we have explored these data to advance computational approaches that enable more effective and targeted use of current and future anticancer therapeutics. Results: We modelled the 50% growth inhibition bioassay end-point (GI(50)) of 17 142 compounds screened against 59 cancer cell lines from the NCl60 panel (941 831 data-points, matrix 93.08% complete) by integrating the chemical and biological (cell line) information. We determine that the protein, gene transcript and miRNA abundance provide the highest predictive signal when modelling the GI(50) endpoint, which significantly outperformed the DNA copy-number variation or exome sequencing data (Tukey's Honestly Significant Difference, P <0.05). We demonstrate that, within the limits of the data, our approach exhibits the ability to both interpolate and extrapolate compound bioactivities to new cell lines and tissues and, although to a lesser extent, to dissimilar compounds. Moreover, our approach outperforms previous models generated on the GDSC dataset. Finally, we determine that in the cases investigated in more detail, the predicted drug-pathway associations and growth inhibition patterns are mostly consistent with the experimental data, which also suggests the possibility of identifying genomic markers of drug sensitivity for novel compounds on novel cell lines.
引用
收藏
页码:85 / 95
页数:11
相关论文
共 53 条
[1]   The Exomes of the NCI-60 Panel: A Genomic Resource for Cancer Biology and Systems Pharmacology [J].
Abaan, Ogan D. ;
Polley, Eric C. ;
Davis, Sean R. ;
Zhu, Yuelin J. ;
Bilke, Sven ;
Walker, Robert L. ;
Pineda, Marbin ;
Gindin, Yevgeniy ;
Jiang, Yuan ;
Reinhold, William C. ;
Holbeck, Susan L. ;
Simon, Richard M. ;
Doroshow, James H. ;
Pommier, Yves ;
Meltzer, Paul S. .
CANCER RESEARCH, 2013, 73 (14) :4372-4382
[2]   Development of the proteasome inhihitor Veleade™ (Bortezomib) [J].
Adams, J ;
Kauffman, M .
CANCER INVESTIGATION, 2004, 22 (02) :304-311
[3]   Integrative and Personalized QSAR Analysis in Cancer by Kernelized Bayesian Matrix Factorization [J].
Amnnad-ud-din, Muhammad ;
Georgii, Elisabeth ;
Gonen, Mehmet ;
Laitinen, Tuomo ;
Kallioniemi, Olli ;
Wennerberg, Krister ;
Poso, Antti ;
Kaski, Samuel .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2014, 54 (08) :2347-2359
[4]   The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity [J].
Barretina, Jordi ;
Caponigro, Giordano ;
Stransky, Nicolas ;
Venkatesan, Kavitha ;
Margolin, Adam A. ;
Kim, Sungjoon ;
Wilson, Christopher J. ;
Lehar, Joseph ;
Kryukov, Gregory V. ;
Sonkin, Dmitriy ;
Reddy, Anupama ;
Liu, Manway ;
Murray, Lauren ;
Berger, Michael F. ;
Monahan, John E. ;
Morais, Paula ;
Meltzer, Jodi ;
Korejwa, Adam ;
Jane-Valbuena, Judit ;
Mapa, Felipa A. ;
Thibault, Joseph ;
Bric-Furlong, Eva ;
Raman, Pichai ;
Shipway, Aaron ;
Engels, Ingo H. ;
Cheng, Jill ;
Yu, Guoying K. ;
Yu, Jianjun ;
Aspesi, Peter, Jr. ;
de Silva, Melanie ;
Jagtap, Kalpana ;
Jones, Michael D. ;
Wang, Li ;
Hatton, Charles ;
Palescandolo, Emanuele ;
Gupta, Supriya ;
Mahan, Scott ;
Sougnez, Carrie ;
Onofrio, Robert C. ;
Liefeld, Ted ;
MacConaill, Laura ;
Winckler, Wendy ;
Reich, Michael ;
Li, Nanxin ;
Mesirov, Jill P. ;
Gabriel, Stacey B. ;
Getz, Gad ;
Ardlie, Kristin ;
Chan, Vivien ;
Myer, Vic E. .
NATURE, 2012, 483 (7391) :603-607
[5]   Molecular similarity searching using atom environments, information-based feature selection, and a naive Bayesian classifier [J].
Bender, A ;
Mussa, HY ;
Glen, RC ;
Reiling, S .
JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 2004, 44 (01) :170-178
[6]   How Similar Are Similarity Searching Methods? A Principal Component Analysis of Molecular Descriptor Space [J].
Bender, Andreas ;
Jenkins, Jeremy L. ;
Scheiber, Josef ;
Sukuru, Sai Chelan K. ;
Glick, Meir ;
Davies, John W. .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2009, 49 (01) :108-119
[7]   How accurate are cancer cell lines? [J].
Borrell, Brendan .
NATURE, 2010, 463 (7283) :858-858
[8]   Functional Motions Modulating VanA Ligand Binding Unraveled by Self-Organizing Maps [J].
Bouvier, Guillaume ;
Duclert-Savatier, Nathalie ;
Desdouits, Nathan ;
Meziane-Cherif, Djalal ;
Blondel, Arnaud ;
Courvalin, Patrice ;
Nilges, Michael ;
Malliavin, Therese E. .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2014, 54 (01) :289-301
[9]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[10]   Computational chemogenomics: Is it more than inductive transfer? [J].
Brown, J. B. ;
Okuno, Yasushi ;
Marcou, Gilles ;
Varnek, Alexandre ;
Horvath, Dragos .
JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2014, 28 (06) :597-618