Hydrogen hydrates: Equation of state and self-preservation effect

被引:35
作者
Belosludov, Rodion V. [1 ]
Bozhko, Yulia Yu. [2 ,3 ]
Zhdanov, Ravil K. [2 ,3 ]
Subbotin, Oleg S. [2 ,3 ]
Kawazoe, Yoshiyuki [3 ,4 ]
Belosludov, Vladimir R. [1 ,2 ]
机构
[1] Tohoku Univ, Inst Mat Res, Sendai, Miyagi 9808577, Japan
[2] RAS, Nikolaev Inst Inorgan Chem, SB, Lavrentiev 3, Novosibirsk 630090, Russia
[3] RAS, Kutateladze Inst Thermophys, SB, Lavrentiev 1, Novosibirsk 630090, Russia
[4] Tohoku Univ, New Ind Hatchery Ctr, Sendai, Miyagi 9808579, Japan
关键词
Hydrogen; Clathrate hydrate; Equation of state; Statistical thermodynamic theory; Self-preservation effect; CLATHRATE HYDRATE; ANOMALOUS PRESERVATION; DISSOCIATION BEHAVIOR; STORAGE; GAS; FORM; ICE; DEPENDENCE; PRESSURE;
D O I
10.1016/j.fluid.2015.11.031
中图分类号
O414.1 [热力学];
学科分类号
摘要
The thermodynamic properties of the hydrogen clathrate hydrate with cubic structure II and hexagonal ice l(h) have been investigated using both lattice dynamics and molecular dynamics methods with the aim of predicting the existence of the self-preservation phenomenon in the hydrogen hydrate. The statistical thermodynamics model with modifications describing host lattice relaxation, guest guest interactions and the quantum nature of guest behavior in clathrate hydrates has been applied to calculate the thermal expansion of the volume for both systems. The calculations show that the hydrate remains in a stable region within the phase diagram because the thermal expansion of the hydrate phase is limited by the thermal expansion of ice. The differences in thermal expansion should lead to the self-preservation effect with the application of additional pressure on the hydrate phase. Molecular dynamics simulations also show that the hydrate phase immersed in the ice phase is stable at ambient pressure, which is below the three-phase ice hydrate gas equilibrium conditions due to the formation of a hydrogen bonding network between the ice and hydrate structures. From a practical point of view this effect can be used for the storage and transport of hydrogen in the hydrate form. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:220 / 228
页数:9
相关论文
共 43 条
[1]   Theoretical study of hydrogen storage in binary hydrogen-methane clathrate hydrates [J].
Belosludov, R. V. ;
Zhdanov, R. K. ;
Subbotin, O. S. ;
Mizuseki, H. ;
Kawazoe, Y. ;
Belosludov, V. R. .
JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, 2014, 6 (05)
[2]   Theoretical modelling of the phase diagrams of clathrate hydrates for hydrogen storage applications [J].
Belosludov, R. V. ;
Zhdanov, R. K. ;
Subbotin, O. S. ;
Mizuseki, H. ;
Souissi, M. ;
Kawazoe, Y. ;
Belosludov, V. R. .
MOLECULAR SIMULATION, 2012, 38 (10) :773-780
[3]   Stability and Composition of Helium Hydrates Based on Ices Ih and II at Low Temperatures [J].
Belosludov, Rodion V. ;
Bozhko, Yulia Y. ;
Subbotin, Oleg S. ;
Belosludov, Vladimir R. ;
Mizuseki, Hiroshi ;
Kawazoe, Yoshiyuki ;
Fomin, Vasily M. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (05) :2587-2593
[4]   Accurate description of phase diagram of clathrate hydrates at the molecular level [J].
Belosludov, Rodion V. ;
Subbotin, Oleg S. ;
Mizuseki, Hiroshi ;
Kawazoe, Yoshiyuki ;
Belosludov, Vladimir R. .
JOURNAL OF CHEMICAL PHYSICS, 2009, 131 (24)
[5]   DYNAMICAL AND THERMODYNAMICAL PROPERTIES OF THE ACETYLACETONES OF COPPER, ALUMINUM, INDIUM, AND RHODIUM [J].
BELOSLUDOV, RV ;
IGUMENOV, IK ;
BELOSLUDOV, VR ;
SHPAKOV, VP .
MOLECULAR PHYSICS, 1994, 82 (01) :51-66
[6]   Physical and chemical properties of gas hydrates: Theoretical aspects of energy storage application [J].
Belosludov, Vladimir R. ;
Subbotin, Oleg S. ;
Krupskii, Dmitrii S. ;
Belosludov, Rodion V. ;
Kawazoe, Yoshiyuki ;
Kudoh, Jun-ichi .
MATERIALS TRANSACTIONS, 2007, 48 (04) :704-710
[7]   DYNAMICAL PROPERTIES OF THE MOLECULAR-CRYSTALS WITH ELECTROSTATIC INTERACTION TAKEN INTO ACCOUNT - LOW-PRESSURE ICE PHASES (IH AND IC) [J].
BELOSLUDOV, VR ;
LAVRENTIEV, MY ;
SYSKIN, SA .
PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1988, 149 (01) :133-142
[8]   CO2 hydrate:: Synthesis, composition, structure, dissociation behavior, and a comparison to structure I CH4 hydrate [J].
Circone, S ;
Stern, LA ;
Kirby, SH ;
Durham, WB ;
Chakoumakos, BC ;
Rawn, CJ ;
Rondinone, AJ ;
Ishii, Y .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (23) :5529-5539
[9]  
Dyadin YA, 1999, MENDELEEV COMMUN, P209
[10]   Chemical and Physical Solutions for Hydrogen Storage [J].
Eberle, Ulrich ;
Felderhoff, Michael ;
Schueth, Ferdi .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2009, 48 (36) :6608-6630