Linear transformation models for interval-censored data: prediction of survival probability and model checking
被引:11
作者:
Zhang, Zhigang
论文数: 0引用数: 0
h-index: 0
机构:
Mem Sloan Kettering Canc Ctr, Dept Epidemiol & Biostat, New York, NY 10021 USAMem Sloan Kettering Canc Ctr, Dept Epidemiol & Biostat, New York, NY 10021 USA
Zhang, Zhigang
[1
]
机构:
[1] Mem Sloan Kettering Canc Ctr, Dept Epidemiol & Biostat, New York, NY 10021 USA
case 2 interval censoring;
generalized estimating equation;
linear transformation regression models;
model checking;
survival probability prediction;
PROPORTIONAL HAZARDS MODEL;
FAILURE-TIME REGRESSION;
ASYMPTOTICALLY OPTIMAL ESTIMATION;
SMOOTH FUNCTIONALS;
ALGORITHM;
INFECTION;
ESTIMATOR;
D O I:
10.1177/1471082X0900900404
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
In statistical analysis, when the value of a random variable is only known to be between two bounds, we say that this random variable is interval censored. This complicated censoring pattern is a common problem in research fields such as clinical trials or actuarial studies and raises challenges for statistical analysis. In this paper, we focus on regression analysis of case 2 interval-censored data. We first briefly review existing regression methods and an estimation approach under the class of linear transformation models developed by Zhang et al. We then propose a method for survival probability prediction via generalized estimating equations. We also consider a graphical model checking technique and a model selection tool. Some theoretical properties are established and the performance of our procedures is evaluated and illustrated by numerical studies including a real-life data analysis.
机构:
Univ Calif San Francisco, Dept Epidemiol & Biostat, San Francisco, CA 94143 USAUniv Calif San Francisco, Dept Epidemiol & Biostat, San Francisco, CA 94143 USA
Bacchetti, P
;
Quale, C
论文数: 0引用数: 0
h-index: 0
机构:Univ Calif San Francisco, Dept Epidemiol & Biostat, San Francisco, CA 94143 USA
机构:
Hong Kong Univ Sci & Technol, Dept Math, Kowloon, Hong Kong, Peoples R ChinaHong Kong Univ Sci & Technol, Dept Math, Kowloon, Hong Kong, Peoples R China
Chen, KN
;
Jin, ZZ
论文数: 0引用数: 0
h-index: 0
机构:Hong Kong Univ Sci & Technol, Dept Math, Kowloon, Hong Kong, Peoples R China
Jin, ZZ
;
Ying, ZL
论文数: 0引用数: 0
h-index: 0
机构:Hong Kong Univ Sci & Technol, Dept Math, Kowloon, Hong Kong, Peoples R China
机构:
Univ Calif San Francisco, Dept Epidemiol & Biostat, San Francisco, CA 94143 USAUniv Calif San Francisco, Dept Epidemiol & Biostat, San Francisco, CA 94143 USA
Bacchetti, P
;
Quale, C
论文数: 0引用数: 0
h-index: 0
机构:Univ Calif San Francisco, Dept Epidemiol & Biostat, San Francisco, CA 94143 USA
机构:
Hong Kong Univ Sci & Technol, Dept Math, Kowloon, Hong Kong, Peoples R ChinaHong Kong Univ Sci & Technol, Dept Math, Kowloon, Hong Kong, Peoples R China
Chen, KN
;
Jin, ZZ
论文数: 0引用数: 0
h-index: 0
机构:Hong Kong Univ Sci & Technol, Dept Math, Kowloon, Hong Kong, Peoples R China
Jin, ZZ
;
Ying, ZL
论文数: 0引用数: 0
h-index: 0
机构:Hong Kong Univ Sci & Technol, Dept Math, Kowloon, Hong Kong, Peoples R China