Asymptotic Dynamics of Attractive-Repulsive Swarms

被引:63
|
作者
Leverentz, Andrew J. [1 ]
Topaz, Chad M. [2 ]
Berno, Andrew J. [1 ]
机构
[1] Harvey Mudd Coll, Dept Math, Claremont, CA 91711 USA
[2] Macalester Coll, Dept Math & Comp Sci, St Paul, MN 55105 USA
来源
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS | 2009年 / 8卷 / 03期
基金
美国国家科学基金会;
关键词
swarm; aggregation; integrodifferential equation; attractive-repulsive; asymptotic dynamics; porous medium; Burgers' equation; blow-up; MODEL; EQUATIONS; PATTERNS; LIMIT;
D O I
10.1137/090749037
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We classify and predict the asymptotic dynamics of a class of swarming models. The model consists of a conservation equation in one dimension describing the movement of a population density field. The velocity is found by convolving the density with a kernel describing attractive-repulsive social interactions. The kernel's first moment and its limiting behavior at the origin determine whether the population asymptotically spreads, contracts, or reaches steady state. For the spreading case, the dynamics approach those of the porous medium equation. The widening, compactly supported population has edges that behave like traveling waves whose speed, density, and slope we calculate. For the contracting case, the dynamics of the cumulative density approach those of Burgers' equation. We derive an analytical upper bound for the finite blow-up time after which the solution forms one or more delta-functions.
引用
收藏
页码:880 / 908
页数:29
相关论文
共 50 条
  • [1] Casimir attractive-repulsive transition in MEMS
    Bostrom, M.
    Ellingsen, S. A.
    Brevik, I.
    Dou, M. F.
    Persson, C.
    Sernelius, Bo E.
    EUROPEAN PHYSICAL JOURNAL B, 2012, 85 (11):
  • [2] Casimir attractive-repulsive transition in MEMS
    M. Boström
    S.Å. Ellingsen
    I. Brevik
    M.F. Dou
    C. Persson
    Bo E. Sernelius
    The European Physical Journal B, 2012, 85
  • [3] STABILITY OF THE BALL FOR ATTRACTIVE-REPULSIVE ENERGIES
    Bonacini, Marco
    Cristoferi, Riccardo
    Topaloglu, Ihsan
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2024, 56 (01) : 588 - 615
  • [4] Attractive-repulsive interaction in coupled quantum oscillators
    Paul, Bulti
    Bandyopadhyay, Biswabibek
    Banerjee, Tanmoy
    PHYSICAL REVIEW E, 2024, 110 (03)
  • [5] Dynamical robustness in presence of attractive-repulsive interactions
    Sharma, Amit
    Rakshit, Biswambhar
    CHAOS SOLITONS & FRACTALS, 2022, 156
  • [6] Convergence Rates of Attractive-Repulsive MCMC Algorithms
    Yu Hang Jiang
    Tong Liu
    Zhiya Lou
    Jeffrey S. Rosenthal
    Shanshan Shangguan
    Fei Wang
    Zixuan Wu
    Methodology and Computing in Applied Probability, 2022, 24 : 2029 - 2054
  • [7] Global minimisers for anisotropic attractive-repulsive interactions
    Kaib, Gunnar
    Kang, Kyungkeun
    Stevens, Angela
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2020, 31 (05) : 854 - 870
  • [9] Convergence Rates of Attractive-Repulsive MCMC Algorithms
    Jiang, Yu Hang
    Liu, Tong
    Lou, Zhiya
    Rosenthal, Jeffrey S.
    Shangguan, Shanshan
    Wang, Fe
    Wu, Zixuan
    METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2022, 24 (03) : 2029 - 2054
  • [10] Minimizers for an Aggregation Model with Attractive-Repulsive Interaction
    Frank, Rupert L.
    Matzke, Ryan W.
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2025, 249 (02)