Viability property for a backward stochastic differential equation and applications to partial differential equations

被引:51
作者
Buckdahn, R
Quincampoix, M
Rascanu, A
机构
[1] Univ Bretagne Occidentale, Dept Math, F-29285 Brest, France
[2] Univ Alexandru Ioan Cuza, Fac Matemat, Iasi 6600, Romania
关键词
D O I
10.1007/s004400050260
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In the present paper, we study conditions under which the solutions of a backward stochastic differential equation remains in a given set of constraints. This property is the so-called "viability property". Tn a separate section, this condition is translated to a class of partial differential equations.
引用
收藏
页码:485 / 504
页数:20
相关论文
共 17 条
[1]  
ALEXANDROV AD, 1939, UCEN ZAP LENINGR MN, V6, P3
[2]  
[Anonymous], VIABILITY THEORY
[3]  
Aubin J. P., 1990, Ann. Scuola Norm. Sup. Pisa Cl. Sci., V17, P595
[4]   STOCHASTIC NAGUMOS VIABILITY THEOREM [J].
AUBIN, JP ;
DAPRATO, G .
STOCHASTIC ANALYSIS AND APPLICATIONS, 1995, 13 (01) :1-11
[5]   The viability theorem for stochastic differential inclusions [J].
Aubin, JP .
STOCHASTIC ANALYSIS AND APPLICATIONS, 1998, 16 (01) :1-15
[6]  
Barles G., 1997, STOCHASTICS STOCHAST, V60, P57
[7]   SOME PROPERTIES OF VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS [J].
CRANDALL, MG ;
EVANS, LC ;
LIONS, PL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 282 (02) :487-502
[8]   USERS GUIDE TO VISCOSITY SOLUTIONS OF 2ND-ORDER PARTIAL-DIFFERENTIAL EQUATIONS [J].
CRANDALL, MG ;
ISHII, H ;
LIONS, PL .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 27 (01) :1-67
[9]  
Delfour M., 1995, The IMA Volumes in Mathematics and its Applications, V70, P39
[10]  
Gegout-Petit A., 1995, STOCHASTICS, V57, P11