A theory of cobordism for non-spherical links

被引:8
作者
Blanloeil, V [1 ]
Michel, F [1 ]
机构
[1] UNIV NANTES,DEPT MATH,F-44072 NANTES 03,FRANCE
关键词
knots and links; knot-cobordism; algebraic links; singularities;
D O I
10.1007/PL00000365
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define an equivalence relation, called algebraic cobordism on the set of bilinear forms over the integers. When n greater than or equal to 3, we prove that two 2n - 1 dimensional, simple fibered links are cobordant if and only if they have algebraically cobordant Seifert forms. As an algebraic link is a simple fibered link, our criterion for cobordism allows us to study isolated singularities of complex hypersurfaces up to cobordism.
引用
收藏
页码:30 / 51
页数:22
相关论文
共 22 条
[1]  
BLANLOEIL V, 1995, CR ACAD SCI I-MATH, V320, P985
[2]  
BLANLOEIL V, 1994, THESIS U NANTES
[3]  
BROWDER W, 1972, ERGER MATH, V65
[4]   COBORDISM OF ALGEBRAIC KNOTS VIA SEIFERT FORMS [J].
DUBOIS, P ;
MICHEL, F .
INVENTIONES MATHEMATICAE, 1993, 111 (01) :151-169
[5]  
DURFEE A, 1974, TOPOLOGY, V13, P47, DOI DOI 10.1016/0040-9383(74)90037-8
[6]   BILINEAR AND QUADRATIC-FORMS ON TORSION MODULES [J].
DURFEE, AH .
ADVANCES IN MATHEMATICS, 1977, 25 (02) :133-164
[7]  
Fox R., 1966, OSAKA J MATH, V3, P257
[8]  
KERVAIRE MA, 1970, LECT NOTES MATH, V197
[9]  
Kervaire Michel A., 1965, B SOC MATH FRANCE, V93, P225, DOI 10.24033/bsmf.1624
[10]  
LANNES J, 1975, SOC MATH FRANCE ASTE, V26