Can adaptive dynamics invade?

被引:140
作者
Dieckmann, U
机构
关键词
D O I
10.1016/S0169-5347(97)01004-5
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
引用
收藏
页码:128 / 131
页数:4
相关论文
共 15 条
[1]   EVOLUTIONARILY UNSTABLE FITNESS MAXIMA AND STABLE FITNESS MINIMA OF CONTINUOUS TRAITS [J].
ABRAMS, PA ;
MATSUDA, H ;
HARADA, Y .
EVOLUTIONARY ECOLOGY, 1993, 7 (05) :465-487
[2]   EVOLUTIONARY CYCLING IN PREDATOR-PREY INTERACTIONS - POPULATION-DYNAMICS AND THE RED QUEEN [J].
DIECKMANN, U ;
MARROW, P ;
LAW, R .
JOURNAL OF THEORETICAL BIOLOGY, 1995, 176 (01) :91-102
[3]   The dynamical theory of coevolution: A derivation from stochastic ecological processes [J].
Dieckmann, U ;
Law, R .
JOURNAL OF MATHEMATICAL BIOLOGY, 1996, 34 (5-6) :579-612
[4]   Evolutionary dynamics [J].
Diekmann, O ;
Christiansen, F ;
Law, R .
JOURNAL OF MATHEMATICAL BIOLOGY, 1996, 34 (5-6) :483-483
[5]   LYAPUNOV EXPONENTS AND THE MATHEMATICS OF INVASION IN OSCILLATORY OR CHAOTIC POPULATIONS [J].
FERRIERE, R ;
GATTO, M .
THEORETICAL POPULATION BIOLOGY, 1995, 48 (02) :126-171
[6]  
GERITZ SAH, IN PRESS EVOL ECOL
[7]  
Hofbauer J., 1990, APPL MATH LETT, V3, P75, DOI DOI 10.1016/0893-9659(90)90051-C
[8]  
KISDI E, 1993, LECT NOTES BIOMATH, V98, P26
[9]  
Metz J.A.J., 1996, STOCHASTIC SPATIAL S, V45, P183
[10]   HOW SHOULD WE DEFINE FITNESS FOR GENERAL ECOLOGICAL SCENARIOS [J].
METZ, JAJ ;
NISBET, RM ;
GERITZ, SAH .
TRENDS IN ECOLOGY & EVOLUTION, 1992, 7 (06) :198-202