Motion segmentation by multistage affine classification

被引:54
作者
Borshukov, GD
Bozdagi, G
Altunbasak, Y
Tekalp, AM
机构
[1] XEROX CORP,WEBSTER RES CTR,WEBSTER,NY 14580
[2] HEWLETT PACKARD LABS,PALO ALTO,CA 94304
[3] UNIV ROCHESTER,DEPT ELECT ENGN,ROCHESTER,NY 14627
[4] UNIV ROCHESTER,CTR ELECTR IMAGING SYST,ROCHESTER,NY 14627
基金
美国国家科学基金会;
关键词
D O I
10.1109/83.641420
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a multistage affine motion segmentation method that combines the benefits of the dominant motion and block-based affine modeling approaches. In particular, we propose two key modifications to a recent motion segmentation algorithm developed by Wang and Adelson. 1) The adaptive k-means clustering step is replaced by a merging step, whereby the affine parameters of a block which has the smallest representation error, rather than the respective cluster center, is used to represent each layer; and 2) we implement it in multiple stages, where pixels belonging to a single motion model are labeled at each stage. Performance improvement due to the proposed modifications is demonstrated on real video frames.
引用
收藏
页码:1591 / 1594
页数:4
相关论文
共 4 条
[1]  
Bergen J. R., 1992, ARTIF INTELL, P147
[2]  
LUCAS B, P IM UND WORKSH 1981, P121
[3]  
Tekalp A.M., 1995, Digital Video Processing
[4]   REPRESENTING MOVING IMAGES WITH LAYERS [J].
WANG, JYA ;
ADELSON, EH .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 1994, 3 (05) :625-638