Infinitely many shape invariant potentials and new orthogonal polynomials

被引:187
作者
Odake, Satoru [1 ]
Sasaki, Ryu [2 ]
机构
[1] Shinshu Univ, Dept Phys, Matsumoto, Nagano 3908621, Japan
[2] Kyoto Univ, Yukawa Inst Theoret Phys, Kyoto 6068502, Japan
关键词
Shape invariance; Orthogonal polynomials; ANNIHILATION-CREATION OPERATORS; DISCRETE QUANTUM-MECHANICS; SPECTRA;
D O I
10.1016/j.physletb.2009.08.004
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Three sets of exactly solvable one-dimensional quantum mechanical potentials are presented. These are shape invariant potentials obtained by deforming the radial oscillator and the trigonometric/hyperbolic Poschl-Teller potentials in terms of their degree e polynomial eigenfunctions. We present the entire eigenfunctions for these Hamiltonians (l = 1, 2, ...) in terms of new orthogonal polynomials. Two recently reported shape invariant potentials of Quesne and Gomez-Ullate et al.'s are the first members of these infinitely many potentials. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:414 / 417
页数:4
相关论文
共 18 条
[1]   A MODIFICATION OF CRUMS METHOD [J].
ADLER, VE .
THEORETICAL AND MATHEMATICAL PHYSICS, 1994, 101 (03) :1381-1386
[2]  
Bagchi B., ARXIV08121488QUANTPH
[3]  
COOPER F, 1995, PHYS REP, V251, P268
[4]  
Crum M, 1955, Q. J. Math., V6, P121
[5]  
Darboux G., 1915, Lecons sur la ThEorie Des Surfaces, V2, P210
[6]   Equidistant spectra of anharmonic oscillators [J].
Dubov, S. Yu. ;
Eleonskii, V. M. ;
Kulagin, N. E. .
CHAOS, 1994, 4 (01) :47-53
[7]  
DUBOV SY, 1992, ZH EKSP TEOR FIZ+, V102, P814
[8]  
GENDENSHTEIN LE, 1983, JETP LETT+, V38, P356
[9]  
Gomez-Ullate D., ARXIV08073939MATHPH
[10]   THE FACTORIZATION METHOD [J].
INFELD, L ;
HULL, TE .
REVIEWS OF MODERN PHYSICS, 1951, 23 (01) :21-68