ASYMPTOTIC EQUIVALENCE AND KOBAYASHI-TYPE ESTIMATES FOR NONAUTONOMOUS MONOTONE OPERATORS IN BANACH SPACES

被引:13
作者
Alvarez, Felipe [1 ]
Peypouquet, Juan [2 ]
机构
[1] Univ Chile, Dept Ingn Matemat, Ctr Modelamiento Matemat, CNRS UMI 2807, Santiago, Chile
[2] Univ Tecn Federico Santa Maria, Dept Matemat, Valparaiso, Chile
关键词
Monotone operators; proximal iterations; nonautonomous differential inclusions; QUASI-DISSIPATIVE OPERATORS; PROXIMAL POINT ALGORITHM; EVOLUTION-EQUATIONS; NONLINEAR SEMIGROUPS; HILBERT-SPACE; BEHAVIOR; APPROXIMATION; CONVERGENCE; GENERATION;
D O I
10.3934/dcds.2009.25.1109
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We provide a sharp generalization to the nonautonomous case of the well-known Kobayashi estimate for proximal iterates associated with maximal monotone operators. We then derive a bound for the distance between a continuous-in-time trajectory, namely the solution to the differential inclusion. (x)over dot + A(t)x there exists 0, and the corresponding proximal iterations. We also establish continuity properties with respect to time of the nonautonomous flow under simple assumptions by revealing their link with the function t bar right arrow A(t). Moreover, our sharper estimations allow us to derive equivalence results which are useful to compare the asymptotic behavior of the trajectories defined by different evolution systems. We do so by extending a classical result of Passty to the nonautonomous setting.
引用
收藏
页码:1109 / 1128
页数:20
相关论文
共 27 条
[1]  
ALVAREZ F, ARXIV09042157
[2]   Approximation theorem for evolution operators [J].
Azuma, R .
STUDIA MATHEMATICA, 2003, 154 (03) :195-206
[3]   ASYMPTOTIC-BEHAVIOR OF SOLUTION TO HILBERT-SPACE PROBLEM - EXAMPLE [J].
BAILLON, JB .
JOURNAL OF FUNCTIONAL ANALYSIS, 1978, 28 (03) :369-376
[4]  
BENILAN P, 1972, EQUATIONS EVOLUTION
[5]  
Brezis H., 1973, N HOLLAND MATH STUD, V5
[6]  
Chernoff P. R., 1968, J. Funct. Anal, V2, P238, DOI [10.1016/0022-1236(68)90020-7, DOI 10.1016/0022-1236(68)90020-7]
[7]   DIFFERENTIAL EQUATIONS IN METRIC SPACES WITH APPLICATIONS [J].
Colombo, Rinaldo M. ;
Guerra, Graziano .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2009, 23 (03) :733-753
[8]   Strong asymptotic convergence of evolution equations governed by maximal monotone operators with Tikhonov regularization [J].
Cominetti, R. ;
Peypouquet, J. ;
Sorin, S. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 245 (12) :3753-3763
[9]   NONLINEAR EVOLUTION EQUATIONS IN BANACH SPACES [J].
CRANDALL, MG ;
PAZY, A .
ISRAEL JOURNAL OF MATHEMATICS, 1972, 11 (01) :57-&
[10]   GENERATION OF SEMI-GROUPS OF NONLINEAR TRANSFORMATIONS ON GENERAL BANACH SPACES [J].
CRANDALL, MG ;
LIGGETT, TM .
AMERICAN JOURNAL OF MATHEMATICS, 1971, 93 (02) :265-&