A high order, progressive method for the evaluation of irregular oscillatory integrals

被引:55
作者
Evans, GA
Webster, JR
机构
[1] LOUGHBOROUGH UNIV TECHNOL,DEPT MATH SCI,LOUGHBOROUGH LE11 3TU,LEICS,ENGLAND
[2] DE MONTFORT UNIV,LEICESTER LE1 9BH,LEICS,ENGLAND
关键词
oscillatory integrals; Levin's method; quadrature formula;
D O I
10.1016/S0168-9274(96)00058-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A method is presented for the evaluation of rapidly oscillatory integrals. The method is a variation of Levin's method, and involves forming a quadrature rule which is exact for a certain set of functions. It is shown that the choice of exact functions and, more importantly, the integration abscissae are crucial to the convergence and numerical stability of the method. The computation of the integration weights is also discussed. Comparisons are made with alternative methods, in particular with Levin's original implementation. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:205 / 218
页数:14
相关论文
共 20 条
[1]   VARIABLE TRANSFORMATION-METHODS AND THEIR USE IN GENERAL AND SINGULAR QUADRATURES [J].
AIHIE, VU ;
EVANS, GA .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1989, 27 (02) :91-101
[2]   USE OF TSCHEBYSCHEFF SERIES FOR EVALUATION OF OSCILLATORY INTEGRALS [J].
ALAYLIOGLU, A ;
EVANS, GA ;
HYSLOP, J .
COMPUTER JOURNAL, 1976, 19 (03) :258-267
[3]  
BAKHVALOV NS, 1968, USSR COMP MATH MATH, V8, P241
[4]  
DAVIS PJ, 1984, METHODS NUMERICAL IN
[5]   A 3-POINT FORMULA FOR NUMERICAL QUADRATURE OF OSCILLATORY INTEGRALS WITH VARIABLE FREQUENCY [J].
EHRENMARK, UT .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1988, 21 (01) :87-99
[6]   FAR FIELD ASYMPTOTICS OF THE TWO-DIMENSIONAL LINEARIZED SLOPING BEACH PROBLEM [J].
EHRENMARK, UT .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1987, 47 (05) :965-981
[7]  
Evans G., 1993, PRACTICAL NUMERICAL
[8]   2 ROBUST METHODS FOR IRREGULAR OSCILLATORY INTEGRALS OVER A FINITE-RANGE [J].
EVANS, GA .
APPLIED NUMERICAL MATHEMATICS, 1994, 14 (04) :383-395
[9]   POLYNOMIAL TRANSFORMATIONS FOR SINGULAR-INTEGRALS [J].
EVANS, GA ;
FORBES, RC ;
HYSLOP, J .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1983, 14 (02) :157-170
[10]  
EVANS GA, 1994, INT J COMPUT MATH, V53, P185