Emerging flexible sensors based on nanomaterials: recent status and applications

被引:170
作者
Wen, Nan [1 ]
Zhang, Lu [1 ]
Jiang, Dawei [1 ,2 ]
Wu, Zijian [3 ]
Li, Bin [1 ,2 ]
Sun, Caiying [1 ]
Guo, Zhanhu [4 ]
机构
[1] Northeast Forestry Univ, Coll Chem Chem Engn & Resource Utilizat, Harbin 150040, Peoples R China
[2] Northeast Forestry Univ, Postdoctoral Mobile Res Stn Forestry Engn, Harbin 150040, Peoples R China
[3] Harbin Univ Sci & Technol, Key Lab Engn Dielect & Its Applicat, Minist Educ, Harbin 150040, Peoples R China
[4] Univ Tennessee, Dept Chem Engn, Integrated Composites Lab ICL, Knoxville, TN 37996 USA
关键词
RESISTIVE PRESSURE SENSORS; STRAIN SENSORS; STRETCHABLE CONDUCTORS; TRANSPARENT ELECTRODES; PIEZOELECTRIC SENSOR; HIGHLY TRANSPARENT; CARBON NANOTUBES; SKIN; COMPOSITES; SENSITIVITY;
D O I
10.1039/d0ta09556g
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Flexible sensors have received tremendous attention over the last several decades due to their outstanding properties, such as high stretchability, excellent biocompatibility, great conformability, and low cost. The main fatal aspect of flexible sensors is that the flexible material has poor conductivity, resulting in obtained flexible sensors possessing poor sensitivity. Many kinds of nanomaterials with excellent conductivity have been integrated with flexible materials to improve the conductivity of flexible sensors, such as carbon nanomaterials and metal nanomaterials. In terms of molding, 3D printing serves as an ideal technology for producing flexible sensors because it can generate previously unattainable geometric structures compared with traditional fabrications. Understanding the features of flexible materials, nanomaterials, and 3D printing technology, and assessing the possibility of their fabrication are therefore critical for the development and application of flexible sensors. Herein, we review the recent literature on flexible materials and nanomaterials, and the fabrication strategy of flexible sensors, with a particular focus on stretchable and self-healing properties. Then, we discuss the application of flexible sensors, such as biomedical devices, wearable devices, and soft robots. Finally, we provide key challenges and opportunities that lie ahead for flexible sensors.
引用
收藏
页码:25499 / 25527
页数:29
相关论文
共 179 条
[1]   Conformal Printing of Electrically Small Antennas on Three-Dimensional Surfaces [J].
Adams, Jacob J. ;
Duoss, Eric B. ;
Malkowski, Thomas F. ;
Motala, Michael J. ;
Ahn, Bok Yeop ;
Nuzzo, Ralph G. ;
Bernhard, Jennifer T. ;
Lewis, Jennifer A. .
ADVANCED MATERIALS, 2011, 23 (11) :1335-1340
[2]   Direct-write 3D printing and characterization of a GelMA-based biomaterial for intracorporeal tissue [J].
Adib, A. Asghari ;
Sheikhi, A. ;
Shahhosseini, M. ;
Simeunovic, A. ;
Wu, S. ;
Castro, C. E. ;
Zhao, R. ;
Khademhosseini, A. ;
Hoelzle, D. J. .
BIOFABRICATION, 2020, 12 (04)
[3]   Omnidirectional Printing of Flexible, Stretchable, and Spanning Silver Microelectrodes [J].
Ahn, Bok Y. ;
Duoss, Eric B. ;
Motala, Michael J. ;
Guo, Xiaoying ;
Park, Sang-Il ;
Xiong, Yujie ;
Yoon, Jongseung ;
Nuzzo, Ralph G. ;
Rogers, John A. ;
Lewis, Jennifer A. .
SCIENCE, 2009, 323 (5921) :1590-1593
[4]   Highly Stretchable and Sensitive Strain Sensor Based on Silver Nanowire-Elastomer Nanocomposite [J].
Amjadi, Morteza ;
Pichitpajongkit, Aekachan ;
Lee, Sangjun ;
Ryu, Seunghwa ;
Park, Inkyu .
ACS NANO, 2014, 8 (05) :5154-5163
[5]   Stretchable, Transparent Electrodes as Wearable Heaters Using Nanotrough Networks of Metallic Glasses with Superior Mechanical Properties and Thermal Stability [J].
An, Byeong Wan ;
Gwak, Eun-Ji ;
Kim, Kukjoo ;
Kim, Young-Cheon ;
Jang, Jiuk ;
Kim, Ju-Young ;
Park, Jang-Ung .
NANO LETTERS, 2016, 16 (01) :471-478
[6]   Healable, Transparent, Room-Temperature Electronic Sensors Based on Carbon Nanotube Network-Coated Polyelectrolyte Multilayers [J].
Bai, Shouli ;
Sun, Chaozheng ;
Yan, Hong ;
Sun, Xiaoming ;
Zhang, Han ;
Luo, Liang ;
Lei, Xiaodong ;
Wan, Pengbo ;
Chen, Xiaodong .
SMALL, 2015, 11 (43) :5807-5813
[7]   Engineers are from PDMS-land, Biologists are from Polystyrenia [J].
Berthier, Erwin ;
Young, Edmond W. K. ;
Beebe, David .
LAB ON A CHIP, 2012, 12 (07) :1224-1237
[8]   Construction of an Interconnected Nanostructured Carbon Black Network: Development of Highly Stretchable and Robust Elastomeric Conductors [J].
Bhagavatheswaran, Eshwaran Subramani ;
Parsekar, Meenali ;
Das, Amit ;
Le, Hai Hong ;
Wiessner, Sven ;
Stoeckelhuber, Klaus Werner ;
Schmaucks, Gerd ;
Heinrich, Gert .
JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (37) :21723-21731
[9]   Optical absorption in transparent PDMS materials applied for multimode waveguides fabrication [J].
Cai, D. K. ;
Neyer, A. ;
Kuckuk, R. ;
Heise, H. M. .
OPTICAL MATERIALS, 2008, 30 (07) :1157-1161
[10]   Extremely Stretchable Strain Sensors Based on Conductive Self-Healing Dynamic Cross-Links Hydrogels for Human-Motion Detection [J].
Cai, Guofa ;
Wang, Jiangxin ;
Qian, Kai ;
Chen, Jingwei ;
Li, Shaohui ;
Lee, Pooi See .
ADVANCED SCIENCE, 2017, 4 (02)